ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental data on the neutrino mixing and masses strongly suggest an underlying approximate symmetry of the relevant Yukawa superpotential terms. Intensive phenomenological explorations during the last decade indicate that permutation symmetries s uch as S_4, A_4 and their subgroups, under certain assumptions and vacuum alignments, predict neutrino mass textures compatible with such data. Motivated by these findings, in the present work we analyse the neutrino properties in F-theory GUT models derived in the framework of the maximal underlying E_8 symmetry in the elliptic fibration. More specifically, we consider local F-SU(5) GUT models and study in detail spectral cover geometries with monodromies associated to the finite symmetries S_4, A_4 and their transitive subgroups, including the dihedral group D_4 and Z_2 X Z_2. We discuss various issues that emerge in the implementation of S_4, A_4 neutrino models in the F-theory context and suggest how these can be resolved. Realistic models are presented for the case of monodromies based on their transitive subgroups. We exemplify this procedure with a detailed analysis performed for the case of Z_2 X Z_2 model.
We derive the closed form solutions for the surface area, the capacitance and the demagnetizing factors of the ellipsoid immersed in the Euclidean space R^3. The exact solutions for the above geometrical and physical properties of the ellipsoid are e xpressed elegantly in terms of the generalized hypergeometric functions of Appell of two variables. Various limiting cases of the theorems of the exact solution for the surface area, the demagnetizing factors and the capacitance of the ellipsoid are derived, which agree with known solutions for the prolate and oblate spheroids and the sphere. Possible applications of the results achieved, in various fields of science, such as in physics, biology and space science are briefly discussed.
We revisit local F-theory SO(10) and SU(5) GUTs and analyze their properties within the framework of the maximal underlying E_8 symmetry in the elliptic fibration. We consider the symmetry enhancements along the intersections of seven-branes with the GUT surface and study in detail the embedding of the abelian factors undergoing monodromies in the covering gauge groups. We combine flux data from the successive breaking of SO(10) to SU(5) gauge symmetry and subsequently to the Standard Model one, and further constrain the parameters determining the models particle spectra. In order to eliminate dangerous baryon number violating operators we propose ways to construct matter parity like symmetries from intrinsic geometric origin. We study implementations of the resulting constrained scenario in specific examples obtained for a variety of monodromies.
In the present work we perform a phenomenological analysis of the effective low energy models with Pati-Salam (PS) gauge symmetry derived in the context of D-branes. A main issue in these models arises from the fact that the right-handed fermions and the PS-symmetry breaking Higgs field transform identically under the PS symmetry, causing unnatural matter-Higgs mixing effects. We argue that this problem could be solved in particular D-brane setups where these fields arise in different intersections. We further observe that whenever a large Higgs mass term is generated in a particular class of mass spectra, a splitting mechanism -reminiscent of the doublet triplet splitting- may protect the neutral Higgs components from a heavy mass term. We analyze the implications of each individual representation which in principle is available in these models in order to specify the minimal spectrum required to build up a consistent PS model which reconciles the low energy data. A short discussion is devoted on the effects of stringy instanton corrections, particularly those generating missing Yukawa couplings and contributing to the fermion mass textures. We discuss the correlations of the intersecting D-brane spectra with those obtained from Gepner constructions and analyze the superpotential, the resulting mass textures and the low energy implications of some examples of the latter along the lines proposed above.
We explore the gauge coupling relations and the unification scale in F-theory SU(5) GUT broken down to the Standard Model by an internal U(1)Y gauge flux. We consider variants with exotic matter representations which may appear in these constructions and investigate their role in the effective field theory model. We make a detailed investigation on the conditions imposed on the extraneous matter to raise the unification scale and make the color triplets heavy in order to avoid fast proton decay. We also discuss in brief the implications on the gaugino masses.
In this paper, the issues of the quark mass hierarchies and the Cabbibo Kobayashi Maskawa mixing are analyzed in a class of intersecting D-brane configurations with Standard Model gauge symmetry. The relevant mass matrices are constructed taking into account the constraints imposed by extra abelian symmetries and anomaly cancelation conditions. Possible mass generating mechanisms including perturbative as well as non-perturbative effects are discussed and specific patterns of mass textures are found characterized by the hierarchies of the scales where the various sources contribute. It is argued that the Cholesky decomposition of the mass matrices is the most appropriate way to determine the properties of these fermion mass patterns, while the associated triangular mass matrix form provides a unified description of all phenomenologically equivalent symmetric and non-symmetric mass matrices. An elegant analytic formula is derived for the Cholesky triangular form of the mass matrices where the entries are given as simple functions of the mass eigenstates and the diagonalizing transformation entries. Finally, motivated by the possibility of vanishing zero Yukawa mass entries in several D-brane and F-theory constructions due to the geometry of the internal space, we analyse in detail all possible texture-zeroes mass matrices within the proposed new context. These new texture-zeroes are compared to those existing in the literature while D-brane inspired cases are worked out in detail.
96 - G. K. Leontaris 2009
String instanton Yukawa corrections from Euclidean D-branes are investigated in an effective Standard Model theory obtained from the minimal U(3)xU(2)xU(1) D-brane configuration. In the case of the minimal chiral and Higgs spectrum, it is found that superpotential contributions are induced by string instantons for the perturbatively forbidden entries of the up and down quark mass matrices. Analogous non-perturbative effects generate heavy Majorana neutrino masses and a Dirac neutrino texture with factorizable Yukawa couplings. For this latter case, a specific example is worked out where it is shown how this texture can reconcile the neutrino data.
114 - G. K. Leontaris 2007
Effective low energy models arising in the context of D-brane configurations with Standard Model (SM) gauge symmetry extended by several gauged abelian factors are discussed. The models are classified according to their hypercharge embeddings consist ent with the SM spectrum hypercharge assignment. Particular cases are analyzed according to their perspectives and viability as low energy effective field theory candidates. The resulting string scale is determined by means of a two-loop renormalization group calculation. Their implications in Yukawa couplings, neutrinos and flavor changing processes are also presented.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا