ترغب بنشر مسار تعليمي؟ اضغط هنا

Instanton induced charged fermion and neutrino masses in a minimal Standard Model scenario from intersecting D-branes

135   0   0.0 ( 0 )
 نشر من قبل George Leontaris
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف G. K. Leontaris




اسأل ChatGPT حول البحث

String instanton Yukawa corrections from Euclidean D-branes are investigated in an effective Standard Model theory obtained from the minimal U(3)xU(2)xU(1) D-brane configuration. In the case of the minimal chiral and Higgs spectrum, it is found that superpotential contributions are induced by string instantons for the perturbatively forbidden entries of the up and down quark mass matrices. Analogous non-perturbative effects generate heavy Majorana neutrino masses and a Dirac neutrino texture with factorizable Yukawa couplings. For this latter case, a specific example is worked out where it is shown how this texture can reconcile the neutrino data.



قيم البحث

اقرأ أيضاً

We construct a one-parameter set of intersecting D4-brane models, with six stacks, that yield the (non-supersymmetric) standard model plus extra vector-like matter. Twisted tadpoles and gauge anomalies are cancelled, and the model contains all of the Yukawa couplings to the tachyonic Higgs doublets that are needed to generate mass terms for the fermions. A string scale in the range 1-10 TeV and a Higgs mass not much greater than the current bound is obtained for certain values of the parameters, consistently with the observed values of the gauge coupling constants.
We study the mu-term matrix of Higgs pairs induced by the D-brane instanton effects in intersecting D6-brane models compactified on T6. It is found that the mu-term matrix has a certain permutation symmetry and its eigenvalues have large hierarchical structure without fine tuning.
66 - J. W. Moffat 2020
The boson and fermion particle masses are calculated in a finite quantum field theory. The field theory satisfies Poincare invariance, unitarity and microscopic causality, and all loop graphs are finite to all orders of perturbation theory. The infin ite derivative nonlocal field interactions are regularized with a mass (length) scale parameter $Lambda_i$. The $W$, $Z$ and Higgs boson masses are calculated from finite one-loop self-energy graphs. The $W^{pm}$ mass is predicted to be $M_W=80.05$ GeV, and the higher order radiative corrections to the Higgs boson mass $m_H=125$ GeV are damped out above the regulating mass scale parameter $Lambda_H=1.57$ TeV. The three generations of quark and lepton masses are calculated from finite one-loop self-interactions, and there is an exponential spacing in mass between the quarks and leptons.
97 - M.J. Strassler 1995
A mechanism is suggested by which the dynamics of confinement could be responsible for the fermion mass matrix. In this approach the large top quark Yukawa coupling is generated naturally during confinement, while those of the other quarks and lepton s stem from non-renormalizable couplings at the Planck scale and are suppressed. Below the confinement scale(s) the effective theory is minimal supersymmetric $SU(5)$ or the supersymmetric standard model. Particles in the $bar 5$ representations of $SU(5)$ are fundamental while those in the $10$ and $5$ are composite. The standard model gauge group is weakly coupled and predictions of unification can be preserved. A hierarchy in confinement scales helps generate a hierarchical spectrum of quark and lepton masses and ensures the Kobayashi-Maskawa matrix is nearly diagonal. However, the most natural outcome is that the strange quark is heavier than the charm quark; additional structure is required to evade this conclusion. No attempt has been made to address the issues of $SU(5)$ breaking, SUSY breaking, doublet/triplet splitting or the $mu$ parameter. While the models presented here are neither elegant nor complete, they are remarkable in that they can be analyzed without uncontrollable dynamical assumptions.
We propose a minimal model that can explain the electroweak scale, neutrino masses, Dark Matter (DM), and successful inflation all at once based on the multicritical-point principle (MPP). The model has two singlet scalar fields that realize an analo gue of the Coleman-Weinberg mechanism, in addition to the Standard Model with heavy Majorana right-handed neutrinos. By assuming a $Z_2 $ symmetry, one of the scalars becomes a DM candidate whose property is almost the same as the minimal Higgs-portal scalar DM. In this model, the MPP can naturally realize a saddle point in the Higgs potential at high energy scales. By the renormalization-group analysis, we study the critical Higgs inflation with non-minimal coupling $xi |H|^2 R$ that utilizes the saddle point of the Higgs potential. We find that it is possible to realize successful inflation even for $xi=25$ and that the heaviest right-handed neutrino is predicted to have a mass around $10^{14}$ GeV to meet the current cosmological observations. Such a small value of $xi$ can be realized by the Higgs-portal coupling $lambda_{SH}simeq 0.32$ and the vacuum expectation value of the additional neutral scalar $langlephiranglesimeq 2.7$ TeV, which correspond to the dark matter mass 2.0 TeV, its spin-independent cross section $1.8times10^{-9}$ pb, and the mass of additional neutral scalar 190 GeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا