ترغب بنشر مسار تعليمي؟ اضغط هنا

In this contribution we review the status and perspectives of direct neutrino mass experiments. These experiments investigate the kinematics of $beta$-decays of specific isotopes ($^3$H, $^{187}$Re, $^{163}$Ho) to derive model-independent information on the averaged electron (anti-) neutrino mass, which is formed by the incoherent sum of the neutrino mass eigenstates contributing to the electron neutrino. We first review the kinematics of $beta$-decay and the determination of the neutrino mass, before giving a brief overview of past neutrino mass measurements (SN1987a-ToF studies, Mainz and Troitsk experiments for $^3$H, cryo-bolometers for $^{187}$Re). We then describe the Karlsruhe Tritium Neutrino (KATRIN) experiment which is currently under construction at Karlsruhe Institute of Technology. The large-scale setup will use the MAC-E-Filter principle pioneered earlier to push the sensitivity down to a value of 200 meV(90% C.L.). KATRIN faces many technological challenges that have to be resolved with regard to source intensity and stability, as well as precision energy analysis and low background rate close to the kinematic endpoint of tritium $beta$-decay at 18.6 keV. We then review new experimental approaches such as the MARE, ECHO and Project8 experiments, which offer the promise to perform an independent measurement of the neutrino mass in the sub-eV region. This variety of methods and the novel technologies developed in all present and future experiments demonstrate the great potential of direct neutrino mass experiments in providing vital information on the absolute mass scale of neutrinos.
The Karlsruhe Tritium Neutrino (KATRIN) experiment investigating tritium beta-decay close to the endpoint with unprecedented precision has stringent requirements on the background level of less than 10^(-2) counts per second. Electron emission during the alpha-decay of Rn-219 and Rn-220 atoms in the electrostatic spectrometers of KATRIN is a serious source of background exceeding this limit. In this paper we compare extensive simulations of Rn-induced background to specific measurements with the KATRIN pre-spectrometer to fully characterize the observed Rn-background rates and signatures and determine generic Rn emanation rates from the pre-spectrometer bulk material and its vacuum components.
The KATRIN experiment is designed to measure the absolute neutrino mass scale with a sensitivity of 200 meV at 90% C.L. by high resolution tritium beta-spectroscopy. A low background level of 10 mHz at the beta-decay endpoint is required in order to achieve the design sensitivity. In this paper we discuss a novel background source arising from magnetically trapped keV electrons in electrostatic retarding spectrometers. The main sources of these electrons are alpha-decays of the radon isotopes (219,220)Rn as well as beta-decays of tritium in the volume of the spectrometers. We characterize the expected background signal by extensive MC simulations and investigate the impact on the KATRIN neutrino mass sensitivity. From these results we refine design parameters for the spectrometer vacuum system and propose active background reduction methods to meet the stringent design limits for the overall background rate.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا