ترغب بنشر مسار تعليمي؟ اضغط هنا

66 - X. Wang , G. Drazer 2014
We study the transport of Brownian particles under a constant driving force and moving in channels that present a varying centerline but have constant aperture width. We investigate two types of channels, {it solid} channels in which the particles ar e geometrically confined between walls and {em soft} channels in which the particles are confined by a periodic potential. We consider the limit of narrow, slowly-varying channels, i.e., when the aperture and the variation in the position of the centerline are small compared to the length of a unit cell in the channel (wavelength). We use the method of asymptotic expansions to determine both the average velocity (or mobility) and the effective diffusion coefficient of the particles. We show that both solid and soft-channels have the same effects on the transport properties up to $O(epsilon^2)$. We also show that the mobility in a solid-channel at $O(epsilon^4)$ is smaller than that in a soft-channel. Interestingly, in both cases, the corrections to the mobility of the particles are independent of the Peclet number and, as a result, the Einstein-Smoluchowski relation is satisfied. Finally, we show that by increasing the solid-channel width from $w(x)$ to $sqrt{6/pi}w(x)$, the mobility of the particles in the solid-channel can be matched to that in the soft-channel up to $O(epsilon^4)$.
158 - J. Koplik , G. Drazer 2009
When particles suspended in a fluid are driven through a regular lattice of cylindrical obstacles, the particle motion is usually not simply in the direction of the force, and in the high Peclet number limit particle trajectories tend to lock along c ertain lattice directions. By means of molecular dynamics simulations we show that this effect persists in the presence of molecular diffusion for nanoparticle flows, provided the Peclet number is not too small. We examine the effects of varying particle and obstacle size, the method of forcing, solid roughness, and particle concentration. While we observe trajectory locking in all cases, the degree of locking varies with particle size and these flows may have application as a separation technique.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا