ترغب بنشر مسار تعليمي؟ اضغط هنا

75 - G. Dissertori 2015
The strong coupling constant is one of the fundamental parameters of the standard model of particle physics. In this review I will briefly summarise the theoretical framework, within which the strong coupling constant is defined and how it is connect ed to measurable observables. Then I will give an historical overview of its experimental determinations and discuss the current status and world average value. Among the many different techniques used to determine this coupling constant in the context of quantum chromodynamics, I will focus in particular on a number of measurements carried out at the Large Electron Positron Collider (LEP) and the Large Hadron Collider (LHC) at CERN.
A prototype for a sampling calorimeter made out of cerium fluoride crystals interleaved with tungsten plates, and read out by wavelength-shifting fibres, has been exposed to beams of electrons with energies between 20 and 150 GeV, produced by the CER N Super Proton Synchrotron accelerator complex. The performance of the prototype is presented and compared to that of a Geant4 simulation of the apparatus. Particular emphasis is given to the response uniformity across the channel front face, and to the prototypes energy resolution.
A novel geometry for a sampling calorimeter employing inorganic scintillators as an active medium is presented. To overcome the mechanical challenges of construction, an innovative light collection geometry has been pioneered, that minimises the comp lexity of construction. First test results are presented, demonstrating a successful signal extraction. The geometry consists of a sampling calorimeter with passive absorber layers interleaved with layers of an active medium made of inorganic scintillating crystals. Wavelength-shifting (WLS) fibres run along the four long, chamfered edges of the stack, transporting the light to photodetectors at the rear. To maximise the amount of scintillation light reaching the WLS fibres, the scintillator chamfers are depolished. It is shown herein that this concept is working for cerium fluoride (CeF$_3$) as a scintillator. Coupled to it, several different types of materials have been tested as WLS medium. In particular, materials that might be sufficiently resistant to the High-Luminosity Large Hadron Collider radiation environment, such as cerium-doped Lutetium-Yttrium Orthosilicate (LYSO) and cerium-doped quartz, are compared to conventional plastic WLS fibres. Finally, an outlook is presented on the possible optimisation of the different components, and the construction and commissioning of a full calorimeter cell prototype is presented.
This Report summarizes the proceedings of the 2013 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt primarily with (1) the techniques for calculating standard model multi-leg NLO and NNLO QCD and NLO EW cross sections and (2) the com parison of those cross sections with LHC data from Run 1, and projections for future measurements in Run 2.
A Cerium Fluoride crystal produced during early R&D studies for calorimetry at the CERN Large Hadron Collider was exposed to a 24 GeV/c proton fluence Phi_p=(2.78 +- 0.20) x 10EE13 cm-2 and, after one year of measurements tracking its recovery, to a fluence Phi_p=(2.12 +- 0.15) x 10EE14 cm-2. Results on proton-induced damage to the crystal and its spontaneous recovery after both irradiations are presented here, along with some new, complementary data on proton-damage in Lead Tungstate. A comparison with FLUKA Monte Carlo simulation results is performed and a qualitative understanding of high-energy damage mechanism is attempted.
151 - , T. Binoth , G. Dissertori 2010
This report summarizes the activities of the SM and NLO Multileg Working Group of the Workshop Physics at TeV Colliders, Les Houches, France 8-26 June, 2009.
Many highly developed Monte Carlo tools for the evaluation of cross sections based on tree matrix elements exist and are used by experimental collaborations in high energy physics. As the evaluation of one-loop matrix elements has recently been under going enormous progress, the combination of one-loop matrix elements with existing Monte Carlo tools is on the horizon. This would lead to phenomenological predictions at the next-to-leading order level. This note summarises the discussion of the next-to-leading order multi-leg (NLM) working group on this issue which has been taking place during the workshop on Physics at TeV colliders at Les Houches, France, in June 2009. The result is a proposal for a standard interface between Monte Carlo tools and one-loop matrix element programs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا