ترغب بنشر مسار تعليمي؟ اضغط هنا

The iron depletion factors found in Galactic planetary nebulae (PNe) span over two orders of magnitude, suggesting that there are differences in the grain formation and destruction processes from object to object. We explore here the relation between the iron depletions, the infrared dust features, and the C/O abundance ratios in a sample of Galactic PNe. We find that those objects with C/O < 1 show a trend of increasing depletions for higher values of C/O, whereas PNe with C/O > 1 break the trend and cover all the range of depletions. Most of the PNe with C/O < 1 show silicate features, but several PNe with C-rich features have C/O < 1, probably reflecting the uncertainties associated with the derivation of C/O. PAHs are distributed over the entire range of iron depletions and C/O values.
We constrain the iron abundance in a sample of 33 low-ionization Galactic planetary nebulae (PNe) using [Fe III] lines and correcting for the contribution of higher ionization states with ionization correction factors (ICFs) that take into account un certainties in the atomic data. We find very low iron abundances in all the objects, suggesting that more than 90% of their iron atoms are condensed onto dust grains. This number is based on the solar iron abundance and implies a lower limit on the dust-to-gas mass ratio, due solely to iron, of M_dust/M_gas>1.3x10^{-3} for our sample. The depletion factors of different PNe cover about two orders of magnitude, probably reflecting differences in the formation, growth, or destruction of their dust grains. However, we do not find any systematic difference between the gaseous iron abundances calculated for C-rich and O-rich PNe, suggesting similar iron depletion efficiencies in both environments. The iron abundances of our sample PNe are similar to those derived following the same procedure for a group of 10 Galactic H II regions. These high depletion factors argue for high depletion efficiencies of refractory elements onto dust grains both in molecular clouds and AGB stars, and low dust destruction efficiencies both in interstellar and circumstellar ionized gas.
We introduce the log(Ha/[SII]6717+6731) vs. log(Ha/[NII]6583) (S2N2) diagnostic diagram as metallicity and ionisation parameter indicator for HII regions in external galaxies. The location of HII regions in the S2N2 diagram was studied both empirical ly and theoretically. We found that, for a wide range of metallicities, the S2N2 diagram gives single valued results in the metallicity-ionisation parameter plane. We demonstrate that the S2N2 diagram is a powerful tool to estimate metallicities of high-redshift (z ~ 2) HII galaxies. Finally, we derive the metallicity for 76 HII regions in M33 from the S2N2 diagram and calculate an O/H abundance gradient for this galaxy of -0.05 (+-0.01) dex kpc^-1.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا