ترغب بنشر مسار تعليمي؟ اضغط هنا

The radiation mechanism of very high energy $gamma$-ray emission from blazars and crucial parameters like magnetic field, and size of the emitting region are not well understood yet. To understand the above mentioned properties of blazars, we observe d five nearby TeV $gamma$-ray emitting blazars (Mrk421, Mrk501, 1ES2344+514, 1ES1218+304 and 3C454.3) and one radio galaxy (M87) using the High Altitude GAmma Ray (HAGAR) telescope. HAGAR is an array of seven telescopes located at Hanle, India to detect Cherenkov light caused by extensive air showers initiated by $gamma$-rays. Mrk421 was observed to undergo one of its brightest flaring episodes on 2010 February 17, and detected by various experiments in X-rays and $gamma$- rays. HAGAR observations of this source during 2010 February 13 - 19, in the energies above 250 GeV show an enhancement in the flux level, with a flux of 6-7 Crab units being detected on 2010 February 17. We present the spectral energy distribution of the source during this flaring episode. In addition to this, the analysis procedure to extract $gamma$-ray signal from HAGAR data is discussed and preliminary results on all the AGNs are presented.
Optical $UBVRI$ photometry and medium resolution spectroscopy of the type Ib supernova SN 2009jf, during the period $sim -15$ to +250days with respect to the $B$ maximum are reported. The light curves are broad, with an extremely slow decline. The ea rly post-maximum decline rate in the $V$ band is similar to SN 2008D, however, the late phase decline rate is slower than other studied type Ib supernovae. With an absolute magnitude of $M_{V} = -17.96pm0.19$ magnitude at peak, SN 2009jf is a normally bright supernova. The peak bolometric luminosity and the energy deposition rate via $^{56}$Ni $rightarrow$ $^{56}$Co chain indicate that $sim {0.17}^{+0.03}_{-0.03}$ M$_{odot}$ of $^{56}$Ni was ejected during the explosion. He,I 5876 AA line is clearly identified in the first spectrum of day $sim -15$, at a velocity of $sim 16000$ km sec$^{-1}$. The [O,I] 6300-6364 AA line seen in the nebular spectrum has a multi-peaked and asymmetric emission profile, with the blue peak being stronger. The estimated flux in this line implies $ga 1.34$ M$_odot$ oxygen was ejected. The slow evolution of the light curves of SN 2009jf indicates the presence of a massive ejecta. The high expansion velocity in the early phase and broader emission lines during the nebular phase suggest it to be an explosion with a large kinetic energy. A simple qualitative estimate leads to the ejecta mass of M$_{rm ej} = 4-9$ M$_odot$, and kinetic energy E$_{rm K} = 3-8 times 10^{51}$ erg. The ejected mass estimate is indicative of an initial main-sequence mass of $ga 20- 25$ M$_odot$.
We present the result of our extensive intranight optical monitoring of the well known low-energy peaked BL Lac (LBL) object PKS 0735+178. This long-term follow-up consists of $R$-band monitoring for a minimum duration of $sim 4$ hours, on 17 nights spanning 11 years (1998-2008). Using the CCD as an N-star photometer, a detection limit of around 1% was attained for the intra-night optical variability (INOV). Remarkably, an INOV amplitude of $geq 3%$ on hour-like time scale was not observed on any of the 17 nights, even though the likelihood of a typical LBL showing such INOV levels in a single session of $ga 4$ hours duration is known to be high ($sim50%$). Our observations have thus established a peculiar long-term INOV quiescence of this radio-selected BL Lac object. Moreover, the access to unpublished optical monitoring data of similarly high sensitivity, acquired in another programme, has allowed us to confirm the same anomalous INOV quiescence of this LBL all the way back to 1989, the epoch of its historically largest radio outburst. Here, we present observational evidence revealing the very unusual INOV behaviour of this classical BL Lac object and discuss this briefly in the context of its other known exceptional properties.
52 - N. G. Kantharia 2007
The first low radio frequency (<1.4 GHz) detection of the outburst of the recurrent nova RS Ophiuchi is presented in this letter. Radio emission was detected at 0.61 GHz on day 20 with a flux density of ~48 mJy and at 0.325 GHz on day 38 with a flux density of ~ 44 mJy. This is in contrast with the 1985 outburst when it was not detected at 0.327 GHz even on day 66. The emission at low radio frequencies is clearly non-thermal and is well-explained by a synchrotron spectrum of index alpha ~ -0.8 (S propto nu^alpha) suffering foreground absorption due to the pre-existing, ionized, warm, clumpy red giant wind. The absence of low frequency radio emission in 1985 and the earlier turn-on of the radio flux in the current outburst are interpreted as being due to higher foreground absorption in 1985 compared to that in 2006, suggesting that the overlying wind densities in 2006 are only ~30% of those in 1985.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا