ترغب بنشر مسار تعليمي؟ اضغط هنا

Borexino is a unique detector able to perform measurement of solar neutrinos fluxes in the energy region around 1 MeV or below due to its low level of radioactive background. It was constructed at the LNGS underground laboratory with a goal of solar $^{7}$Be neutrino flux measurement with 5% precision. The goal has been successfully achieved marking the end of the first stage of the experiment. A number of other important measurements of solar neutrino fluxes have been performed during the first stage. Recently the collaboration conducted successful liquid scintillator repurification campaign aiming to reduce main contaminants in the sub-MeV energy range. With the new levels of radiopurity Borexino can improve existing and challenge a number of new measurements including: improvement of the results on the Solar and terrestrial neutrino fluxes measurements; measurement of pp and CNO solar neutrino fluxes; search for non-standard interactions of neutrino; study of the neutrino oscillations on the short baseline with an artificial neutrino source (search for sterile neutrino) in context of SOX project.
The Borexino experiment, located in the Gran Sasso National Laboratory, is an organic liquid scintillator detector conceived for the real time spectroscopy of low energy solar neutrinos. The data taking campaign phase I (2007 - 2010) has allowed the first independent measurements of 7Be, 8B and pep fluxes as well as the first measurement of anti-neutrinos from the earth. After a purification of the scintillator, Borexino is now in phase II since 2011. We review here the recent results achieved during 2013, concerning the seasonal modulation in the 7Be signal, the study of cosmogenic backgrounds and the updated measurement of geo-neutrinos. We also review the upcoming measurements from phase II data (pp, pep, CNO) and the project SOX devoted to the study of sterile neutrinos via the use of a 51Cr neutrino source and a 144Ce-144Pr antineutrino source placed in close proximity of the active material.
If heavy neutrinos with mass $m_{ u_{H}}geq$2$ m_e $ are produced in the Sun via the decay ${^8rm{B}} rightarrow {^8rm{Be}} + e^+ + u_H$ in a side branch of pp-chain, they would undergo the observable decay into an electron, a positron and a light n eutrino $ u_{H}rightarrow u_{L}+e^++e^-$. In the present work Borexino data are used to set a bound on the existence of such decays. We constrain the mixing of a heavy neutrino with mass 1.5 MeV $leq m_{ u_{H}} le$ 14 MeV to be $|U_{eH}|^2leq (10^{-3}-4times10^{-6})$ respectively. These are tighter limits on the mixing parameters than obtained in previous experiments at nuclear reactors and accelerators.
In the last decades, a very important breakthrough has been brought in the elementary particle physics by the discovery of the phenomenon of the neutrino oscillations, which has shown neutrino properties beyond the Standard Model. But a full understa nding of the various aspects of the neutrino oscillations is far to be achieved. In this paper the theoretical background of the neutrino oscillation phenomenon is described, referring in particular to the paradigmatic models. Then the various techniques and detectors which studied neutrinos from different sources are discussed, starting from the pioneering ones up to the detectors still in operation and to those in preparation. The physics results are finally presented adopting the same research path which has crossed this long saga. The problems not yet fixed in this field are discussed, together with the perspectives of their solutions in the near future.
We review a new interdisciplinary field between Geology and Physics: the study of the Earths geo-neutrino flux. We describe competing models for the composition of the Earth, present geological insights into the make up of the continental and oceanic crust, those parts of the Earth that concentrate Th and U, the heat producing elements, and provide details of the regional settings in the continents and oceans where operating and planned detectors are sited. Details are presented for the only two operating detectors that are capable of measuring the Earths geo-neutrinos flux: Borexino and KamLAND; results achieved to date are presented, along with their impacts on geophysical and geochemical models of the Earth. Finally, future planned experiments are highlighted.
The solar neutrino experiment Borexino, which is located in the Gran Sasso underground laboratories, is in a unique position to study muon-induced backgrounds in an organic liquid scintillator. In this study, a large sample of cosmic muons is identif ied and tracked by a muon veto detector external to the liquid scintillator, and by the specific light patterns observed when muons cross the scintillator volume. The yield of muon-induced neutrons is found to be Yn =(3.10+-0.11)10-4 n/({mu} (g/cm2)). The distance profile between the parent muon track and the neutron capture point has the average value {lambda} = (81.5 +- 2.7)cm. Additionally the yields of a number of cosmogenic radioisotopes are measured for 12N, 12B, 8He, 9C, 9Li, 8B, 6He, 8Li, 11Be, 10C and 11C. All results are compared with Monte Carlo simulation predictions using the Fluka and Geant4 packages. General agreement between data and simulation is observed for the cosmogenic production yields with a few exceptions, the most prominent case being 11C yield for which both codes return about 50% lower values. The predicted {mu}-n distance profile and the neutron multiplicity distribution are found to be overall consistent with data.
We present a measurement of the geo--neutrino signal obtained from 1353 days of data with the Borexino detector at Laboratori Nazionali del Gran Sasso in Italy. With a fiducial exposure of (3.69 $pm$ 0.16) $times$ $10^{31}$ proton $times$ year after all selection cuts and background subtraction, we detected (14.3 $pm$ 4.4) geo-neutrino events assuming a fixed chondritic mass Th/U ratio of 3.9. This corresponds to a geo-neutrino signal $S_{geo}$ = (38.8 $pm$ 12.0) TNU with just a 6 $times$ $10^{-6}$ probability for a null geo-neutrino measurement. With U and Th left as free parameters in the fit, the relative signals are $S_{mathrm{Th}}$ = (10.6 $pm$ 12.7) TNU and $S_mathrm{U}$ = (26.5 $pm$ 19.5) TNU. Borexino data alone are compatible with a mantle geo--neutrino signal of (15.4 $pm$ 12.3) TNU, while a combined analysis with the KamLAND data allows to extract a mantle signal of (14.1 $pm$ 8.1) TNU. Our measurement of a reactor anti--neutrino signal $S_{react}$ = 84.5$^{+19.3}_{-18.9}$ TNU is in agreement with expectations in the presence of neutrino oscillations.
We have studied the alpha decays of 214Po into 210Pb and of 212Po into 208Pb tagged by the coincidence with the preceding beta decays from 214Bi and 212Bi, respectively. The employed 222Rn, 232Th, and 220Rn sources were sealed inside quartz vials and inserted in the Counting Test Facility at the underground Gran Sasso National Laboratory in Italy. We find that the mean lifetime of 214Po is (236.00 +- 0.42(stat) +- 0.15(syst)) mu s and that of 212Po is (425.1 +- 0.9(stat) +- 1.2(syst)) ns. Our results, obtained from data with signal-to-background ratio larger than 1000, reduce the overall uncertainties and are compatible with previous measurements.
Borexino was the first experiment to detect solar neutrinos in real-time in the sub-MeV region. In order to achieve high precision in the determination of neutrino rates, the detector design includes an internal and an external calibration system. Th is paper describes both calibration systems and the calibration campaigns that were carried out in the period between 2008 and 2011. We discuss some of the results and show that the calibration procedures preserved the radiopurity of the scintillator. The calibrations provided a detailed understanding of the detector response and led to a significant reduction of the systematic uncertainties in the Borexino measurements.
Borexino is a large-volume liquid scintillator detector installed in the underground halls of the Laboratori Nazionali del Gran Sasso in Italy. After several years of construction, data taking started in May 2007. The Borexino phase I ended after abo ut three years of data taking. Borexino provided the first real time measurement of the $^{7}$Be solar neutrino interaction rate with accuracy better than 5% and confirmed the absence of its day-night asymmetry with 1.4% precision. This latter Borexino results alone rejects the LOW region of solar neutrino oscillation parameters at more than 8.5 $sigma$ C.L. Combined with the other solar neutrino data, Borexino measurements isolate the MSW-LMA solution of neutrino oscillations without assuming CPT invariance in the neutrino sector. Borexino has also directly observed solar neutrinos in the 1.0-1.5 MeV energy range, leading to the first direct evidence of the $pep$ solar neutrino signal and the strongest constraint of the CNO solar neutrino flux up to date. Borexino provided the measurement of the solar $^{8}$B neutrino rate with 3 MeV energy threshold.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا