ترغب بنشر مسار تعليمي؟ اضغط هنا

83 - M. Zechmeister 2013
Optimal extraction is a key step in processing the raw images of spectra as registered by two-dimensional detector arrays to a one-dimensional format. Previously reported algorithms reconstruct models for a mean one-dimensional spatial profile to ass ist a properly weighted extraction. We outline a simple optimal extraction algorithm including error propagation, which is very suitable for stabilised, fibre-fed spectrographs and does not model the spatial profile shape. A high signal-to-noise, master-flat image serves as reference image and is directly used as an extraction profile mask. Each extracted spectral value is the scaling factor relative to the cross-section of the unnormalised master-flat which contains all information about the spatial profile as well as pixel-to-pixel variations, fringing, and blaze. The extracted spectrum is measured relative to the flat spectrum. Using echelle spectra of the HARPS spectrograph we demonstrate a competitive extraction performance in terms of signal-to-noise and show that extracted spectra can be used for high precision radial velocity measurement. Pre- or post-flat-fielding of the data is not necessary, since all spectrograph inefficiencies inherent to the extraction mask are automatically accounted for. Also the reconstruction of the mean spatial profile by models is not needed, thereby reducing the number of operations to extract spectra. Flat-relative optimal extraction is a simple, efficient, and robust method that can be applied easily to stabilised, fibre-fed spectrographs.
Although gravitational collapse is supposed to play an essential role in the star formation process, infall motions have been always elusive to detect. So far, only a few observational signatures have been commonly used to claim for the presence of i nfall. Often these features consist in either blue-asymmetries or absorption at red-shifted velocities (e.g., inverse P-Cygni profiles). Both signatures are based only on the shape of the line profile and they do not guarantee by themselves the presence of dominant infall motions. More robust mapping signatures can be obtained from images that angularly resolve the infalling gas. Here we present VLA observations of the ammonia inversion transitions (2,2), (3,3), (4,4), (5,5), and (6,6) towards the hot molecular core (HMC) near G31.41+0.31 that show the signatures of protostellar infall theoretically predicted by Anglada et al. (1991). The intensity of the ammonia emission is compact and sharply increases towards the centre in the blue-shifted velocity channel maps, while it shows a more flattened distribution in the red-shifted velocity channels. Additionally, the emission becomes more compact with increasing (relative) velocity for both red and blue-shifted channels. We introduce a new infall signature, the central blue spot, easily identifiable in the first-order moment maps. We show that rotation produces an additional, independent signature, making the distribution of the emission in the channel maps asymmetric with respect to the central position, but without masking the infall signatures. All these mapping signatures, which are identified here for the first time, are present in the observed ammonia transitions of G31 HMC.
We present centimeter and millimeter observations of the NGC 2071 star-forming region performed with the VLA and CARMA. We detected counterparts at 3.6 cm and 3 mm for the previously known sources IRS 1, IRS 2, IRS 3, and VLA 1. All these sources sho w SEDs dominated by free-free thermal emission at cm wavelengths, and thermal dust emission at mm wavelengths, suggesting that all of them are associated with YSOs. IRS 1 shows a complex morphology at 3.6 cm, with changes in the direction of its elongation. We discuss two possible explanations to this morphology: the result of changes in the direction of a jet due to interactions with a dense ambient medium, or that we are actually observing the superposition of two jets arising from two components of a binary system. Higher angular resolution observations at 1.3 cm support the second possibility, since a double source is inferred at this wavelength. IRS 3 shows a clear jet-like morphology at 3.6 cm. Over a time-span of four years, we observed changes in the morphology of this source that we interpret as due to ejection of ionized material in a jet. The emission at 3 mm of IRS 3 is angularly resolved, with a deconvolved size (FWHM) of ~120 AU, and seems to be tracing a dusty circumstellar disk perpendicular to the radio jet. An irradiated accretion disk model around an intermediate-mass YSO can account for the observed SED and spatial intensity profile at 3 mm, supporting this interpretation.
We present the results of the observations of the (J,K)=(1,1) and the (J,K)=(2,2) inversion transitions of the NH3 molecule toward a large sample of 40 regions with molecular or optical outflows, using the 37 m radio telescope of the Haystack Observa tory. We detected NH3 emission in 27 of the observed regions, which we mapped in 25 of them. Additionally, we searched for the 6{16}-5{23} H2O maser line toward six regions, detecting H2O maser emission in two of them, HH265 and AFGL 5173. We estimate the physical parameters of the regions mapped in NH3 and analyze for each particular region the distribution of high density gas and its relationship with the presence of young stellar objects. From the global analysis of our data we find that in general the highest values of the line width are obtained for the regions with the highest values of mass and kinetic temperature. We also found a correlation between the nonthermal line width and the bolometric luminosity of the sources, and between the mass of the core and the bolometric luminosity. We confirm with a larger sample of regions the conclusion of Anglada et al. (1997) that the NH3 line emission is more intense toward molecular outflow sources than toward sources with optical outflow, suggesting a possible evolutionary scheme in which young stellar objects associated with molecular outflows progressively lose their neighboring high-density gas, weakening both the NH3 emission and the molecular outflow in the process, and making optical jets more easily detectable as the total amount of gas decreases.
BD+20 1790 is a young active, metal-rich, late-type K5Ve star. We have undertaken a study of stellar activity and kinematics for this star over the past few years. Previous results show a high level of stellar activity, with the presence of prominenc e-like structures, spots on the surface and strong flare events, despite the moderate rotational velocity of the star. In addition, radial velocity variations with a semi-amplitude of up to 1 km/s were detected. We investigated the nature of these radial velocity variations, in order to determine whether they are due to stellar activity or the reflex motion of the star induced by a companion. We have analysed high-resolution echelle spectra and also two-band photometry was obtained to produce the light curve and determine the photometric period. Based upon the analysis of the bisector velocity span, as well as spectroscopic indices of chromospheric indicators and taking into account the photometric analysis, we report that the best explanation for the RV variation is the presence of a sub-stellar companion. The Keplerian fit of the RV data yields a solution for a close-in massive planet with an orbital period of 7.78 days. The presence of the close-in massive planet could also be an interpretation for the high level of stellar activity detected. Since the RV data are not part of a planet search program, we can consider our results as a serendipitous evidence of a planetary companion. To date, this is the youngest main sequence star for which a planetary candidate has been reported.
183 - Y. Gomez , D. Tafoya , G. Anglada 2009
K 3-35 is a planetary nebula (PN) where H2O maser emission has been detected, suggesting that it departed from the proto-PNe phase only some decades ago. Interferometric VLA observations of the OH 18 cm transitions in K~3-35 are presented.OH maser em ission is detected in all four ground state lines (1612, 1665, 1667, and 1720 MHz). All the masers appear blueshifted with respect to the systemic velocity of the nebula and they have different spatial and kinematic distributions.The OH 1665 and 1720 MHz masers appear spatially coincident with the core of the nebula, while the OH 1612 and 1667 MHz ones exhibit a more extended distribution. We suggest that the 1665 and 1720 masers arise from a region close to the central star, possibly in a torus, while the 1612 and 1667 lines originate mainly from the extended northern lobe of the outflow. It is worth noting that the location and velocity of the OH 1720 MHz maser emission are very similar to those of the H2O masers (coinciding within 0.1 and ~2 km/s, respectively). We suggest that the pumping mechanism in the H2O masers could be produced by the same shock that is exciting the OH 1720 MHz transition. A high degree of circular polarization (>50%) was found to be present in some features of the 1612, 1665, and 1720 MHz emission.For the 1665 MHz transition at ~ +18 km/s the emission with left and right circular polarizations (LCP and RCP) coincide spatially within a region of ~0.03 in diameter.Assuming that these RCP and LCP 1665 features come from a Zeeman pair, we estimate a magnetic field of ~0.9 mG within 150 AU from the 1.3 cm continuum peak. This value is in agreement with a solar-type magnetic field associated with evolved stars.
Star forming regions are expected to show linear proper motions due to the relative motion of the Sun with respect to the region. These proper motions appear superposed to the proper motions expected in features associated with mass ejection from the young stellar objects embedded in them. Therefore, it is necessary to have a good knowledge of the proper motions of the region as a whole in order to correctly interpret the motions associated with mass ejection. In this paper we present the first direct measurement of proper motions of the NGC 1333 star forming region. This region harbors one of the most studied Herbig-Haro systems, HH 7-11, whose exciting source remains unclear. Using VLA A configuration data at 3.6 cm taken over 10 years, we have been able to measure the absolute proper motions of four thermal sources embedded in NGC 1333. From our results we have derived the mean proper motions of the NGC 1333 star forming region to be mu(alpha)cos(delta) = 9 +- 1 mas/yr and mu(delta) = -10 +- 2 mas/yr. In this paper, we also discuss the possible implications of our results in the identification of the outflow exciting sources.
We present sensitive, high angular resolution ($0rlap.{}05$) VLA continuum observations made at 7 mm of the core of the HH 111/121 quadrupolar outflow. We estimate that at this wavelength the continuum emission is dominated by dust, although a signif icant free-free contribution ($sim$30%) is still present. The observed structure is formed by two overlapping, elongated sources approximately perpendicular to each other as viewed from Earth. We interpret this structure as either tracing two circumstellar disks that exist around each of the protostars of the close binary source at the core of this quadrupolar outflow or a disk and a jet perpendicular to it. Both interpretations have advantages and disadvantages, and future high angular resolution spectroscopic millimeter observations are required to favor one of them in a more conclusive way.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا