ترغب بنشر مسار تعليمي؟ اضغط هنا

Random intersection graphs have received much interest and been used in diverse applications. They are naturally induced in modeling secure sensor networks under random key predistribution schemes, as well as in modeling the topologies of social netw orks including common-interest networks, collaboration networks, and actor networks. Simply put, a random intersection graph is constructed by assigning each node a set of items in some random manner and then putting an edge between any two nodes that share a certain number of items. Broadly speaking, our work is about analyzing random intersection graphs, and models generated by composing it with other random graph models including random geometric graphs and ErdH{o}s-Renyi graphs. These compositional models are introduced to capture the characteristics of various complex natural or man-made networks more accurately than the existing models in the literature. For random intersection graphs and their compositions with other random graphs, we study properties such as ($k$-)connectivity, ($k$-)robustness, and containment of perfect matchings and Hamilton cycles. Our results are typically given in the form of asymptotically exact probabilities or zero-one laws specifying critical scalings, and provide key insights into the design and analysis of various real-world networks.
One-dimensional geometric random graphs are constructed by distributing $n$ nodes uniformly and independently on a unit interval and then assigning an undirected edge between any two nodes that have a distance at most $r_n$. These graphs have receive d much interest and been used in various applications including wireless networks. A threshold of $r_n$ for connectivity is known as $r_n^{*} = frac{ln n}{n}$ in the literature. In this paper, we prove that a threshold of $r_n$ for the absence of isolated node is $frac{ln n}{2 n}$ (i.e., a half of the threshold $r_n^{*}$). Our result shows there is a curious gap between thresholds of connectivity and the absence of isolated node in one-dimensional geometric random graphs; in particular, when $r_n$ equals $frac{cln n}{ n}$ for a constant $c in( frac{1}{2}, 1)$, a one-dimensional geometric random graph has no isolated node but is not connected. This curious gap in one-dimensional geometric random graphs is in sharp contrast to the prevalent phenomenon in many other random graphs such as two-dimensional geometric random graphs, ErdH{o}s-Renyi graphs, and random intersection graphs, all of which in the asymptotic sense become connected as soon as there is no isolated node.
Random $s$-intersection graphs have recently received considerable attention in a wide range of application areas. In such a graph, each vertex is equipped with a set of items in some random manner, and any two vertices establish an undirected edge i n between if and only if they have at least $s$ common items. In particular, in a uniform random $s$-intersection graph, each vertex independently selects a fixed number of items uniformly at random from a common item pool, while in a binomial random $s$-intersection graph, each item in some item pool is independently attached to each vertex with the same probability. For binomial/uniform random $s$-intersection graphs, we establish threshold functions for perfect matching containment, Hamilton cycle containment, and $k$-robustness, where $k$-robustness is in the sense of Zhang and Sundaram [IEEE Conf. on Decision & Control 12]. We show that these threshold functions resemble those of classical ErdH{o}s-R{e}nyi graphs, where each pair of vertices has an undirected edge independently with the same probability.
Context : We still do not know which mechanisms are responsible for the transport of angular momentum inside stars. The recent detection of mixed modes that contain the signature of rotation in the spectra of Kepler subgiants and red giants gives us the opportunity to make progress on this issue. Aims: Our aim is to probe the radial dependance of the rotation profiles for a sample of Kepler targets. For this purpose, subgiants and early red giants are particularly interesting targets because their rotational splittings are more sensitive to the rotation outside the deeper core than is the case for their more evolved counterparts. Methods: We first extract the rotational splittings and frequencies of the modes for six young Kepler red giants. We then perform a seismic modeling of these stars using the evolutionary codes CESAM2k and ASTEC. By using the observed splittings and the rotational kernels of the optimal models, we perform
The Korteweg-de Vries (KdV) equation with periodic boundary conditions is considered. The interaction of a periodic solitary wave (cnoidal wave) with high frequency radiation of finite energy ($L^2$-norm) is studied. It is proved that the interaction of low frequency component (cnoidal wave) and high frequency radiation is weak for finite time in the following sense: the radiation approximately satisfies Airy equation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا