ﻻ يوجد ملخص باللغة العربية
One-dimensional geometric random graphs are constructed by distributing $n$ nodes uniformly and independently on a unit interval and then assigning an undirected edge between any two nodes that have a distance at most $r_n$. These graphs have received much interest and been used in various applications including wireless networks. A threshold of $r_n$ for connectivity is known as $r_n^{*} = frac{ln n}{n}$ in the literature. In this paper, we prove that a threshold of $r_n$ for the absence of isolated node is $frac{ln n}{2 n}$ (i.e., a half of the threshold $r_n^{*}$). Our result shows there is a curious gap between thresholds of connectivity and the absence of isolated node in one-dimensional geometric random graphs; in particular, when $r_n$ equals $frac{cln n}{ n}$ for a constant $c in( frac{1}{2}, 1)$, a one-dimensional geometric random graph has no isolated node but is not connected. This curious gap in one-dimensional geometric random graphs is in sharp contrast to the prevalent phenomenon in many other random graphs such as two-dimensional geometric random graphs, ErdH{o}s-Renyi graphs, and random intersection graphs, all of which in the asymptotic sense become connected as soon as there is no isolated node.
Random $s$-intersection graphs have recently received considerable attention in a wide range of application areas. In such a graph, each vertex is equipped with a set of items in some random manner, and any two vertices establish an undirected edge i
How are people linked in a highly connected society? Since in many networks a power-law (scale-free) node-degree distribution can be observed, power-law might be seen as a universal characteristics of networks. But this study of communication in the
Connections between continuous and discrete worlds tend to be elusive. One example is curvature. Even though there exist numerous nonequivalent definitions of graph curvature, none is known to converge in any limit to any traditional definition of cu
Random geometric graphs consist of randomly distributed nodes (points), with pairs of nodes within a given mutual distance linked. In the usual model the distribution of nodes is uniform on a square, and in the limit of infinitely many nodes and shri
We propose a thermodynamic version of the Axelrod model of social influence. In one-dimensional (1D) lattices, the thermodynamic model becomes a coupled Potts model with a bonding interaction that increases with the site matching traits. We analytica