ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyze some features of alternative Hermitian and quasi-Hermitian quantum descriptions of simple and bipartite compound systems. We show that alternative descriptions of two interacting subsystems are possible if and only if the metric operator o f the compound system can be obtained as tensor product of positive operators on component spaces. Some examples also show that such property could be strictly connected with symmetry properties of the non-Hermitian Hamiltonian.
We show that the complex projections of time-dependent $eta $-quasianti-Hermitian quaternionic Hamiltonian dynamics are complex stochastic dynamics in the space of complex quasi-Hermitian density matrices if and only if a quasistationarity condition is fulfilled, i. e., if and only if $eta $ is an Hermitian positive time-independent complex operator. An example is also discussed.
We discuss the alternative algebraic structures on the manifold of quantum states arising from alternative Hermitian structures associated with quantum bi-Hamiltonian systems. We also consider the consequences at the level of the Heisenberg picture i n terms of deformations of the associative product on the space of observables.
We discuss the dynamical quantum systems which turn out to be bi-unitary with respect to the same alternative Hermitian structures in a infinite-dimensional complex Hilbert space. We give a necessary and sufficient condition so that the Hermitian str uctures are in generic position. Finally the transformations of the bi-unitary group are explicitly obtained.
In complete analogy with the classical situation (which is briefly reviewed) it is possible to define bi-Hamiltonian descriptions for Quantum systems. We also analyze compatible Hermitian structures in full analogy with compatible Poisson structures.
We discuss transformations generated by dynamical quantum systems which are bi-unitary, i.e. unitary with respect to a pair of Hermitian structures on an infinite-dimensional complex Hilbert space. We introduce the notion of Hermitian structures in g eneric relative position. We provide few necessary and sufficient conditions for two Hermitian structures to be in generic relative position to better illustrate the relevance of this notion. The group of bi-unitary transformations is considered in both the generic and non-generic case. Finally, we generalize the analysis to real Hilbert spaces and extend to infinite dimensions results already available in the framework of finite-dimensional linear bi-Hamiltonian systems.
We characterize the quasianti-Hermitian quaternionic operators in QQM by means of their spectra; moreover, we state a necessary and sufficient condition for a set of quasianti-Hermitian quaternionic operators to be anti-Hermitian with respect to a un iquely defined positive scalar product in a infinite dimensional (right) quaternionic Hilbert space. According to such results we obtain two alternative descriptions of a quantum optical physical system, in the realm of quaternionic quantum mechanics, while no alternative can exist in complex quantum mechanics, and we discuss some differences between them.
We extend the definition of generalized parity $P$, charge-conjugation $C$ and time-reversal $T$ operators to nondiagonalizable pseudo-Hermitian Hamiltonians, and we use these generalized operators to describe the full set of symmetries of a pseudo-H ermitian Hamiltonian according to a fourfold classification. In particular we show that $TP$ and $CTP$ are the generators of the antiunitary symmetries; moreover, a necessary and sufficient condition is provided for a pseudo-Hermitian Hamiltonian $H$ to admit a $P$-reflecting symmetry which generates the $P$-pseudounitary and the $P$-pseudoantiunitary symmetries. Finally, a physical example is considered and some hints on the $P$-unitary evolution of a physical system are also given.
118 - S. De Leo 2002
We discuss the (right) eigenvalue equation for $mathbb{H}$, $mathbb{C}$ and $mathbb{R}$ linear quaternionic operators. The possibility to introduce an isomorphism between these operators and real/complex matrices allows to translate the quaternionic problem into an {em equivalent} real or complex counterpart. Interesting applications are found in solving differential equations within quaternionic formulations of quantum mechanics.
We consider a class of (possibly nondiagonalizable) pseudo-Hermitian operators with discrete spectrum, showing that in no case (unless they are diagonalizable and have a real spectrum) they are Hermitian with respect to a semidefinite inner product, and that the pseudo-Hermiticity property is equivalent to the existence of an antilinear involutory symmetry. Moreover, we show that a typical degeneracy of the real eigenvalues (which reduces to the well known Kramers degeneracy in the Hermitian case) occurs whenever a fermionic (possibly nondiagonalizable) pseudo-Hermitian Hamiltonian admits an antilinear symmetry like the time-reversal operator $T$. Some consequences and applications are briefly discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا