ترغب بنشر مسار تعليمي؟ اضغط هنا

On the pseudo-Hermitian nondiagonalizable Hamiltonians

195   0   0.0 ( 0 )
 نشر من قبل Luigi Solombrino
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a class of (possibly nondiagonalizable) pseudo-Hermitian operators with discrete spectrum, showing that in no case (unless they are diagonalizable and have a real spectrum) they are Hermitian with respect to a semidefinite inner product, and that the pseudo-Hermiticity property is equivalent to the existence of an antilinear involutory symmetry. Moreover, we show that a typical degeneracy of the real eigenvalues (which reduces to the well known Kramers degeneracy in the Hermitian case) occurs whenever a fermionic (possibly nondiagonalizable) pseudo-Hermitian Hamiltonian admits an antilinear symmetry like the time-reversal operator $T$. Some consequences and applications are briefly discussed.



قيم البحث

اقرأ أيضاً

We extend the definition of generalized parity $P$, charge-conjugation $C$ and time-reversal $T$ operators to nondiagonalizable pseudo-Hermitian Hamiltonians, and we use these generalized operators to describe the full set of symmetries of a pseudo-H ermitian Hamiltonian according to a fourfold classification. In particular we show that $TP$ and $CTP$ are the generators of the antiunitary symmetries; moreover, a necessary and sufficient condition is provided for a pseudo-Hermitian Hamiltonian $H$ to admit a $P$-reflecting symmetry which generates the $P$-pseudounitary and the $P$-pseudoantiunitary symmetries. Finally, a physical example is considered and some hints on the $P$-unitary evolution of a physical system are also given.
Complex extension of quantum mechanics and the discovery of pseudo-unitarily invariant random matrix theory has set the stage for a number of applications of these concepts in physics. We briefly review the basic ideas and present applications to pro blems in statistical mechanics where new results have become possible. We have found it important to mention the precise directions where advances could be made if further results become available.
We consider the description of open quantum systems with probability sinks (or sources) in terms of general non-Hermitian Hamiltonians.~Within such a framework, we study novel possible definitions of the quantum linear entropy as an indicator of the flow of information during the dynamics. Such linear entropy functionals are necessary in the case of a partially Wigner-transformed non-Hermitian Hamiltonian (which is typically useful within a mixed quantum-classical representation). Both the case of a system represented by a pure non-Hermitian Hamiltonian as well as that of the case of non-Hermitian dynamics in a classical bath are explicitly considered.
In this work we address systems described by time-dependent non-Hermitian Hamiltonians under time-dependent Dyson maps. We shown that when starting from a given time-dependent non-Hermitian Hamiltonian which is not itself an observable, an infinite c hain of gauge linked time-dependent non-observable non-Hermitian Hamiltonians can be derived from it. The matrix elements of the observables associated with all these non observable Hamiltonians are, however, all linked to each other, and in the particular case where global gauges exist, these matrix elements becomes all identical to each other. In this case, therefore, by approaching whatever the Hamiltonian in the chain we can get information about any other Hamiltonian. We then show that the whole chain of time-dependent non-Hermitian Hamiltonians collapses to a single time-dependent non-Hermitian Hamiltonian when, under particular choices for the time-dependent Dyson maps, the observability of the Hamiltonians is assured. This collapse thus shows that the observability character of a non-Hermitian Hamiltonian prevents the construction of the gauge-linked Hamiltonian chain and, consequently, the possibility of approaching one Hamiltonian from another.
The counterpart of the rotating wave approximation for non-Hermitian Hamiltonians is considered, which allows for the derivation of a suitable effective Hamiltonian for systems with some states undergoing decays. In the limit of very high decay rates , on the basis of this effective description we can predict the occurrence of a quantum Zeno dynamics which is interpreted as the removal of some coupling terms and the vanishing of an operatorial pseudo-Lamb shift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا