ترغب بنشر مسار تعليمي؟ اضغط هنا

Active particles may happen to be confined in channels so narrow that they cannot overtake each other (Single File conditions). This interesting situation reveals nontrivial physical features as a consequence of the strong inter-particle correlations developed in collective rearrangements. We consider a minimal model for active Brownian particles with the aim of studying the modifications introduced by activity with respect to the classical (passive) Single File picture. Depending on whether their motion is dominated by translational or rotational diffusion, we find that active Brownian particles in Single File may arrange into clusters which are continuously merging and splitting ({it active clusters}) or merely reproduce passive-motion paradigms, respectively. We show that activity convey to self-propelled particles a strategic advantage for trespassing narrow channels against external biases (e.g., the gravitational field).
We propose a new look at the heat bath for two Brownian particles, in which the heat bath as a `system is both perturbed and sensed by the Brownian particles. Non-local thermal fluctuation give rise to bath-mediated static forces between the particle s. Based on the general sum-rule of the linear response theory, we derive an explicit relation linking these forces to the friction kernel describing the particles dynamics. The relation is analytically confirmed in the case of two solvable models and could be experimentally challenged. Our results point out that the inclusion of the environment as a part of the whole system is important for micron- or nano-scale physics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا