ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the site-specific probing of charge-transfer dynamics in a prototype system for organic photovoltaics (OPV) by picosecond time-resolved X-ray photoelectron spectroscopy. A layered system consisting of approximately two monolayers of C$_{60} $ deposited on top of a thin film of Copper-Phthalocyanine (CuPC) is excited by an optical pump pulse and the induced electronic dynamics are probed with 590 eV X-ray pulses. Charge transfer from the electron donor (CuPC) to the acceptor (C$_{60}$) and subsequent charge carrier dynamics are monitored by recording the time-dependent C 1$s$ core level photoemission spectrum of the system. The arrival of electrons in the C$_{60}$ layer is readily observed as a completely reversible, transient shift of the C$_{60}$ associated C 1$s$ core level, while the C 1$s$ level of the CuPC remains unchanged. The capability to probe charge transfer and recombination dynamics in OPV assemblies directly in the time domain and from the perspective of well-defined domains is expected to open additional pathways to better understand and optimize the performance of this emerging technology.
The electronic excitation spectra of undoped, and potassium as well as calcium doped phenantrene-type hydrocarbons have been investigated using electron energy-loss spectroscopy (EELS) in transmission. In the undoped materials, the lowest energy exci tations are excitons with a relatively high binding energy. These excitons also are rather localized as revealed by their vanishing dispersion. Upon doping, new low energy excitation features appear in the former gaps of the materials under investigation. In K$_3$picene and K$_3$chrysene they are characterized by a negative dispersion while in Ca$_3$picene they are dispersionless.
The inelastic scattering of electrons is one route to study the vibrational and electronic properties of materials. Such experiments, also called electron energy-loss spectroscopy, are particularly useful for the investigation of the collective excit ations in metals, the charge carrier plasmons. These plasmons are characterized by a specific dispersion (energy-momentum relationship), which contains information on the sometimes complex nature of the conduction electrons in topical materials. In this review we highlight the improvements of the electron energy-loss spectrometer in the last years, summarize current possibilities with this technique, and give examples where the investigation of the plasmon dispersion allows insight into the interplay of the conduction electrons with other degrees of freedom.
Phthalocyanines in combination with C$_{60}$ are benchmark materials for organic solar cells. Here we have studied the morphology and electronic properties of co-deposited mixtures (blends) of these materials forming a bulk heterojunction as a functi on of the concentration of the two constituents. For a concentration of 1:1 of CuPc:C$_{60}$ a phase separation into about 100 nm size domains is observed, which results in electronic properties similar to layered systems. For low C$_{60}$ concentrations (10:1 CuPc:C$_{60}$) the morphology, as indicated by Low-Energy Electron Microscopy (LEEM) images, suggests a growth mode characterized by (amorphous) domains of CuPC, whereby the domain boundaries are decorated with C$_{60}$. Despite of these markedly different growth modes, the electronic properties of the heterojunction films are essentially unchanged.
We have examined the singlet excitons in two representatives of acene-type (tetracene and pentacene) and phenacene-type (chrysene and picene) molecular crystals, respectively, using electron energy-loss spectroscopy at low temperatures. We show that the excitation spectra of the two hydrocarbon families significantly differ. Moreover, close inspection of the data indicates that there is an increasing importance of charge-transfer excitons at lowest excitation energy with increasing length of the molecules.
We have carried out electron energy-loss investigations of the lowest singlet excitons in pentacene at 20 K. Our studies allow to determine the full exciton band structure in the a*,b* reciprocal lattice plane. The lowest singlet exciton can move coh erently within this plane, and the resulting exciton dispersion is highly anisotropic. The analysis of the energetically following (satellite) features indicates a strong admixture of charge transfer excitations to the exciton wave function.
Recently, a new organic superconductor, K-intercalated Picene with high transition temperatures $T_c$ (up to 18,K) has been discovered. We have investigated the electronic properties of the undoped relative, solid picene, using a combination of exper imental and theoretical methods. Our results provide detailed insight into the occuopied and unoccupied electronic states.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا