ترغب بنشر مسار تعليمي؟ اضغط هنا

Decades after the first predictions of intermediate-mass black holes (IMBHs) in globular clusters (GCs) there is still no unambiguous observational evidence for their existence. The most promising signatures for IMBHs are found in the cores of GCs, w here the evidence now comes from the stellar velocity distribution, the surface density profile, and, for very deep observations, the mass-segregation profile near the cluster center. However, interpretation of the data, and, in particular, constraints on central IMBH masses, require the use of detailed cluster dynamical models. Here we present results from Monte Carlo cluster simulations of GCs that harbor IMBHs. As an example of application, we compare velocity dispersion, surface brightness and mass-segregation profiles with observations of the GC M10, and constrain the mass of a possible central IMBH in this cluster. We find that, although M10 does not seem to possess a cuspy surface density profile, the presence of an IMBH with a mass up to 0.75% of the total cluster mass, corresponding to about 600 Msun, cannot be excluded. This is also in agreement with the surface brightness profile, although we find it to be less constraining, as it is dominated by the light of giants, causing it to fluctuate significantly. We also find that the mass-segregation profile cannot be used to discriminate between models with and without IMBH. The reason is that M10 is not yet dynamically evolved enough for the quenching of mass segregation to take effect. Finally, detecting a velocity dispersion cusp in clusters with central densities as low as in M10 is extremely challenging, and has to rely on only 20-40 bright stars. It is only when stars with masses down to 0.3 Msun are included that the velocity cusp is sampled close enough to the IMBH for a significant increase above the core velocity dispersion to become detectable.
The long-term habitability of Earth-like planets requires low orbital eccentricities. A secular perturbation from a distant stellar companion is a very important mechanism in exciting planetary eccentricities, as many of the extrasolar planetary syst ems are associated with stellar companions. Although the orbital evolution of an Earth-like planet in a stellar binary is well understood, the effect of a binary perturbation to a more realistic system containing additional gas giant planets has been very little studied. Here we provide analytic criteria confirmed by a large ensemble of numerical integrations that identify the initial orbital parameters leading to eccentric orbits. We show that an extra-solar earth is likely to experience a broad range of orbital evolution dictated by the location of a gas-giant planet, necessitating more focused studies on the effect of eccentricity on the potential for life.
Recent observations of the white dwarf (WD) populations in the Galactic globular cluster NGC 6397 suggest that WDs receive a kick of a few km/s shortly before they are born. Using our Monte Carlo cluster evolution code, which includes accurate treatm ents of all relevant physical processes operating in globular clusters, we study the effects of the kicks on their host cluster and on the WD population itself. We find that in clusters whose velocity dispersion is comparable to the kick speed, WD kicks are a significant energy source for the cluster, prolonging the initial cluster core contraction phase significantly so that at late times the cluster core to half-mass radius ratio is a factor of up to ~ 10 larger than in the no-kick case. WD kicks thus represent a possible resolution of the large discrepancy between observed and theoretically predicted values of this key structural parameter. Our modeling also reproduces the observed trend for younger WDs to be more extended in their radial distribution in the cluster than older WDs.
Many recent observational studies have concluded that planetary systems commonly exist in multiple-star systems. At least ~20%, and presumably a larger fraction of the known extrasolar planetary systems are associated with one or more stellar compani ons. These stellar companions normally exist at large distances from the planetary systems (typical projected binary separations are on the orders 100-10000AU) and are often faint (ranging from F to T spectral types). Yet, secular cyclic angular momentum exchange with these distant stellar companions can significantly alter the orbital configuration of the planets around the primaries. One of the most interesting and fairly common outcomes seen in numerical simulations is the opening of a large mutual inclination angle between the planetary orbits, forced by differential nodal precessions caused by the binary companion. The growth of the mutual inclination angle between planetary orbits induces additional large-amplitude eccentricity oscillations of the inner planet due to the quadrupole gravitational perturbation by the outer planet. This eccentricity oscillation may eventually result in the orbital decay of the inner planet through tidal friction, as previously proposed as Kozai migration or Kozai cycles with tidal friction (KCTF). This orbital decay mechanism induced by the binary perturbation and subsequent tidal dissipation may stand as an alternative formation channel for close-in extrasolar planets.
The orbital eccentricity of a single planet around a component of a stellar binary system with a sufficiently large mutual inclination angle is known to oscillate on a secular timescale through the Kozai mechanism. We have investigated the effects of the Kozai mechanism on double-planet systems in binaries. The evolutionary sequence of a pair of planets under the influence of a binary companion is fairly complex. Various dynamical outcomes are seen in numerical simulations. One interesting outcome is the rigid rotation of the planetary orbits in which the planetary orbital planes secularly precess in concert, while the orbital eccentricities oscillate synchronously. In such cases the outer planet acts as a propagator of the perturbation from the binary companion to the inner planet and drives the inner planetary orbit to precess at a rate faster than what is predicted by the Kozai mechanism.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا