ترغب بنشر مسار تعليمي؟ اضغط هنا

Induced Kozai Migration and Formation of Close-in Planets in Binaries

109   0   0.0 ( 0 )
 نشر من قبل Genya Takeda
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many recent observational studies have concluded that planetary systems commonly exist in multiple-star systems. At least ~20%, and presumably a larger fraction of the known extrasolar planetary systems are associated with one or more stellar companions. These stellar companions normally exist at large distances from the planetary systems (typical projected binary separations are on the orders 100-10000AU) and are often faint (ranging from F to T spectral types). Yet, secular cyclic angular momentum exchange with these distant stellar companions can significantly alter the orbital configuration of the planets around the primaries. One of the most interesting and fairly common outcomes seen in numerical simulations is the opening of a large mutual inclination angle between the planetary orbits, forced by differential nodal precessions caused by the binary companion. The growth of the mutual inclination angle between planetary orbits induces additional large-amplitude eccentricity oscillations of the inner planet due to the quadrupole gravitational perturbation by the outer planet. This eccentricity oscillation may eventually result in the orbital decay of the inner planet through tidal friction, as previously proposed as Kozai migration or Kozai cycles with tidal friction (KCTF). This orbital decay mechanism induced by the binary perturbation and subsequent tidal dissipation may stand as an alternative formation channel for close-in extrasolar planets.

قيم البحث

اقرأ أيضاً

Although several S-type and P-type planets in binary systems were discovered in past years, S-type planets have not yet been found in close binaries with an orbital separation not more than 5 au. Recent studies suggest that S-type planets in close bi naries may be detected through high-accuracy observations. However, nowadays planet formation theories imply that it is difficult for S-type planets in close binaries systems to form in situ. In this work, we extensively perform numerical simulations to explore scenarios of planet-planet scattering among circumbinary planets and subsequent tidal capture in various binary configurations, to examine whether the mechanism can play a part in producing such kind of planets. Our results show that this mechanism is robust. The maximum capture probability is $sim 10%$, which can be comparable to the tidal capture probability of hot Jupiters in single star systems. The capture probability is related to binary configurations, where a smaller eccentricity or a low mass ratio of the binary will lead to a larger probability of capture, and vice versa. Furthermore, we find that S-type planets with retrograde orbits can be naturally produced via capture process. These planets on retrograde orbits can help us distinguish in situ formation and post-capture origin for S-type planet in close binaries systems. The forthcoming missions (PLATO) will provide the opportunity and feasibility to detect such planets. Our work provides several suggestions for selecting target binaries in search for S-type planets in the near future.
Many exoplanets in close-in orbits are observed to have relatively high eccentricities and large stellar obliquities. We explore the possibility that these result from planet-planet scattering by studying the dynamical outcomes from a large number of orbit integrations in systems with two and three gas-giant planets in close-in orbits (0.05 AU < a < 0.15 AU). We find that at these orbital separations, unstable systems starting with low eccentricities and mutual inclinations ($elesssim0.1$, $ilesssim0.1$) generally lead to planet-planet collisions in which the collision product is a planet on a low-eccentricity, low-inclination orbit. This result is inconsistent with the observations. We conclude that eccentricity and inclination excitation from planet-planet scattering must precede migration of planets into short-period orbits. This result constrains theories of planet migration: the semi-major axis must shrink by 1-2 orders of magnitude without damping the eccentricity and inclination.
Planets in close-in orbits interact magnetically and tidally with their host stars. These interactions lead to a net torque that makes close-in planets migrate inward or outward depending on their orbital distance. We compare systematically the stren gth of magnetic and tidal torques for typical observed star-planet systems (T-Tauri & hot Jupiter, M dwarf & Earth-like planet, K star & hot Jupiter) based on state-of-the-art scaling-laws. We find that depending on the characteristics of the system, tidal or magnetic effects can dominate. For very close-in planets, we find that both torques can make a planet migrate on a timescale as small as 10 to 100 thousands of years. Both effects thus have to be taken into account when predicting the evolution of compact systems.
Over a broad range of initial inclinations and eccentricities an appreciable fraction of hierarchical triple star systems with similar masses are essentially unaffected by the Kozai-Lidov mechanism (KM) until the primary in the central binary evolves into a compact object. Once it does, it may be much less massive than the other components in the ternary, enabling the eccentric Kozai mechanism (EKM): the mutual inclination between the inner and outer binary can flip signs driving the inner binary to very high eccentricity, leading to a close binary or collision. We demonstrate this Mass-loss Induced Eccentric Kozai (MIEK) mechanism by considering an example system and defining an ad-hoc minimal separation between the inner two members at which tidal affects become important. For fixed initial masses and semi-major axes, but uniform distributions of eccentricity and cosine of the mutual inclination, ~10% of systems interact tidally or collide while the primary is on the MS due to the KM or EKM. Those affected by the EKM are not captured by earlier quadrupole-order secular calculations. We show that fully ~30% of systems interact tidally or collide for the first time as the primary swells to AU scales, mostly as a result of the KM. Finally, ~2% of systems interact tidally or collide for the first time after the primary sheds most of its mass and becomes a WD, mostly as a result of the MIEK mechanism. These findings motivate a more detailed study of mass-loss in triple systems and the formation of close NS/WD-MS and NS/WD-NS/WD binaries without an initial common envelope phase.
84 - Willy Kley 2007
Among the extrasolar planetary systems about 30 are located in a stellar binary orbiting one of the stars, preferably the more massive primary. The dynamical influence of the second companion alters firstly the orbital elements of the forming protopl anet directly and secondly the structure of the disk from which the planet formed which in turn will modify the planets evolution. We present detailed analysis of these effects and present new hydrodynamical simulations of the evolution of protoplanets embedded in circumstellar disks in the presence of a companion star, and compare our results to the system $gamma$ Cep. To analyse the early formation of planetary embryos, we follow the evolution of a swarm of planetesimals embedded in a circumstellar disk. Finally, we study the evolution of planets embedded in circumbinary disks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا