ترغب بنشر مسار تعليمي؟ اضغط هنا

75 - Frank J. Tipler 2021
Many-Worlds quantum mechanics differs from standard quantum mechanics in that in Many-Worlds, the wave function is a relative density of universes in the multiverse amplitude rather than a probability amplitude. This means that in Many-Worlds, the Bo rn frequencies are approached rather than given a priori. Thus in Many-Worlds the rate of approach to the final frequencies can be calculated and compared with observation. I use Many-Worlds to derive the rate of approach in the double slit experiment, and show that it agrees with observation. Standard quantum theory has never been used to derive an approach formula because it cannot be so used, as has been tacitly acknowledged for 70 years.
Tipler has shown that if we assume that the particle physics Standard Model and DeWitt-Wheeler quantum gravity (equivalent to Feynman-Weinberg quantum gravity) are a Theory of Everything, then in the very early universe, the Cosmic Background Radiati on (CBR) could not have coupled to right handed electrons and quarks. Tipler further showed that if this property of CBR has continued, the Sunyaev-Zeldovich (SZ) effect would be observed to be too low by a factor of two. WMAP and PLANCK observed this. Tipler showed that this CBR property would also mean the Ultra High Energy Cosmic Rays (UHECR) would propagate a factor of ten further than standard theory predicts, since most of the cross section for pion production when a UHECR hits a CBR photon is due to a quark spin flip, and such a flip cannot occur if a CBR particle cannot couple to right-handed quarks. We show that taking this additional propagation distance into account allows us to identify the sources of 86% of the UHECR seen by the Pierre Auger Collaboration. We can also identify the sources of 9 of the 11 UHECR seen by the AGASA observatory, and the source of the 320 EeV UHECR seen by the Flys Eye instrument. We propose observations to test the theory underlying the UHECR identifications, beginning with measuring the redshifts of five galaxies whose apparent visual magnitude we estimate to be about 15, and whose positions we give to within one arcsecond. The particle physics Standard Model identifies the Dark Energy and Dark Matter.
61 - Frank J. Tipler 2010
I show that observations of quantum nonlocality can be interpreted as purely local phenomena, provided one assumes that the cosmos is a multiverse. Conversely, the observation of quantum nonlocality can be interpreted as observation evidence for a mu ltiverse cosmology, just as observation of the setting of the Sun can be interpreted as evidence for the Earths rotation.
Most early twentieth century relativists --- Lorentz, Einstein, Eddington, for examples --- claimed that general relativity was merely a theory of the aether. We shall confirm this claim by deriving the Einstein equations using aether theory. We shal l use a combination of Lorentzs and Kelvins conception of the aether. Our derivation of the Einstein equations will not use the vanishing of the covariant divergence of the stress-energy tensor, but instead equate the Ricci tensor to the sum of the usual stress-energy tensor and a stress-energy tensor for the aether, a tensor based on Kelvins aether theory. A crucial first step is generalizing the Cartan formalism of Newtonian gravity to allow spatial curvature, as conjectured by Gauss and Riemann.
147 - Frank J. Tipler 2010
I have shown that if we assume that the Standard Model of particle physics and Feynman-Weinberg quantum gravity holds at all times, then in the very early universe, the Cosmic Background Radiation (CBR) cannot couple to right handed electrons and qua rks. If this property of CBR has persisted to the present day, the Ultra HIgh Energy Cosmic Rays (UHECR) can propagate a factor of ten further than they could if the CBR were an electromagnetic field, since most of the cross section for pion production when a UHECR hits a CBR photon is due to a quark spin flip, and such a flip cannot occur if the CBR photon cannot couple to right handed quarks. The GZM effect will still reduce the number of UHECR, but UHECR can arrive from a distance of a redshift of up to $z=0.1$. I show that taking this additional propagation distance into account allows us to identify the sources of 4 of the 6 UHECR which the Pierre Auger Collaboration could not identify, and also identify the source of the 320 EeV UHECR seen by the Flys Eye instrument. I suggest an experiment to test this hypothesis about the CBR.
198 - Frank J. Tipler 2010
I show that the classical Hamilton-Jacobi (H-J) equation can be used as a technique to study quantum mechanical problems. I first show that the the Schrodinger equation is just the classical H-J equation, constrained by a condition that forces the so lutions of the H-J equation to be everywhere $C^2$. That is, quantum mechanics is just classical mechanics constrained to ensure that ``God does not play dice with the universe. I show that this condition, which imposes global determinism, strongly suggests that $psi^*psi$ measures the density of universes in a multiverse. I show that this interpretation implies the Born Interpretation, and that the function space for $psi$ is larger than a Hilbert space, with plane waves automatically included. Finally, I use H-J theory to derive the momentum-position uncertainty relation, thus proving that in quantum mechanics, uncertainty arises from the interference of the other universes of the multiverse, not from some intrinsic indeterminism in nature.
138 - Frank J. Tipler 2008
The Born Interpretation of the wave function gives only the relative frequencies as the number of observations approaches infinity. Using the Many-Worlds Interpretation of quantum mechanics, specifically the fact that there must exist oth
52 - Frank J. Tipler 2007
I argue that the (extended) Standard Model (SM) of particle physics and the renormalizable Feynman-Weinberg theory of quantum gravity comprise a theory of everything. I show that imposing the appropriate cosmological boundary conditions make the theo ry finite. The infinities that are normally renormalized away and the series divergence infinities are both eliminated by the same mechanism. Furthermore, this theory can resolve the horizon, flatness, and isotropy problems of cosmology. Joint mathematical consistency naturally yields a scale-free, Gaussian, adiabatic perturbation spectrum, and more matter than antimatter. I show that mathematical consistency of the theory requires the universe to begin at an initial singularity with a pure $SU(2)_L$ gauge field. I show that quantum mechanics requires this field to have a Planckian spectrum whatever its temperature. If this field has managed to survive thermalization to the present day, then it would be the CMBR. If so, then we would have a natural explanation for the dark matter and the dark energy. I show that isotropic ultrahigh energy (UHE) cosmic rays are explained if the CMBR is a pure $SU(2)_L$ gauge field. The $SU(2)_L$ nature of the CMBR may have been seen in the Sunyaev-Zeldovich effect. I propose several simple experiments to test the hypothesis.
204 - Frank J. Tipler 2007
I shall present three arguments for the proposition that intelligent life is very rare in the universe. First, I shall summarize the consensus opinion of the founders of the Modern Synthesis (Simpson, Dobzhanski, and Mayr) that the evolution of intel ligent life is exceedingly improbable. Second, I shall develop the Fermi Paradox: if they existed theyd be here. Third, I shall show that if intelligent life were too common, it would use up all available resources and die out. But I shall show that the quantum mechanical principle of unitarity (actually a form of teleology!) requires intelligent life to survive to the end of time. Finally, I shall argue that, if the universe is indeed accelerating, then survival to the end of time requires that intelligent life, though rare, to have evolved several times in the visible universe. I shall argue that the acceleration is a consequence of the excess of matter over antimatter in the universe. I shall suggest experiments to test these claims.
We give a proof of Coxs Theorem on the product rule and sum rule for conditional plausibility without assuming continuity or differentiablity of plausibility. Instead, we extend the notion of plausibility to apply to unknowns giving them plausible va lues. Our proof is enormously simpler than others that have recently appeared in the literature, yet completely rigorous. For example, we do not need to investigate the 11 possibilities for conditional plausibilities as described on page 25 of Jaynes recent book Probability Theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا