ترغب بنشر مسار تعليمي؟ اضغط هنا

299 - Sebastian Bohr 2021
We study the halo mass function and inner halo structure at high redshifts ($zgeq5$) for a suite of simulations within the structure formation ETHOS framework. Scenarios such as cold dark matter (CDM), thermal warm dark matter (WDM), and dark acousti c oscillations (DAO) of various strengths are contained in ETHOS with just two parameters $h_{rm peak}$ and $k_{rm peak}$, the amplitude and scale of the first DAO peak. The Extended Press-Schechter (EPS) formalism with a smooth-$k$ filter is able to predict the cut-off in the halo mass function created by the suppression of small scale power in ETHOS models (controlled by $k_{rm peak}$), as well as the slope at small masses that is dependent on $h_{rm peak}$. Interestingly, we find that DAOs introduce a localized feature in the mass distribution of haloes, resulting in a mass function that is distinct in shape compared to either CDM or WDM. We find that the halo density profiles of ${it all}$ ETHOS models are well described by the NFW profile, with a concentration that is lower than in the CDM case in a way that is regulated by $k_{rm peak}$. We show that the concentration-mass relation for DAO models can be well approximated by the mass assembly model based on the extended Press-Schechter theory, which has been proposed for CDM and WDM elsewhere. Our results can be used to perform inexpensive calculations of the halo mass function and concentration-mass relation within the ETHOS parametrization without the need of $N-$body simulations.
140 - Sebastian Bohr 2020
We propose two effective parameters that fully characterise galactic-scale structure formation at high redshifts ($zgtrsim5$) for a variety of dark matter (DM) models that have a primordial cutoff in the matter power spectrum. Our description is with in the recently proposed ETHOS framework and includes standard thermal Warm DM (WDM) and models with dark acoustic oscillations (DAOs). To define and explore this parameter space, we use high-redshift zoom-in simulations that cover a wide range of non-linear scales from those where DM should behave as CDM ($ksim10,h,{rm Mpc}^{-1}$), down to those characterised by the onset of galaxy formation ($ksim500,h,{rm Mpc}^{-1}$). We show that the two physically motivated parameters $h_{rm peak}$ and $k_{rm peak}$, the amplitude and scale of the first DAO peak, respectively, are sufficient to parametrize the linear matter power spectrum and classify the DM models as belonging to effective non-linear structure formation regions. These are defined by their relative departure from Cold DM ($k_{rm peak}rightarrowinfty$) and WDM ($h_{rm peak}=0$) according to the non-linear matter power spectrum and halo mass function. We identify a region where the DAOs still leave a distinct signature from WDM down to $z=5$, while a large part of the DAO parameter space is shown to be degenerate with WDM. Our framework can then be used to seamlessly connect a broad class of particle DM models to their structure formation properties at high redshift without the need of additional $N$-body simulations.
Local measurements of the Hubble parameter are increasingly in tension with the value inferred from a $Lambda$CDM fit to the cosmic microwave background (CMB) data. In this paper, we construct scenarios in which evolving scalar fields significantly e ase this tension by adding energy to the Universe around recombination in a narrow redshift window. We identify solutions of $V propto phi^{2 n}$ with simple asymptotic behavior, both oscillatory (rocking) and rolling. These are the first solutions of this kind in which the field evolution and fluctuations are consistently implemented using the equations of motion. Our findings differ qualitatively from those of the existing literature, which rely upon a coarse-grained fluid description. Combining CMB data with low-redshift measurements, the best fit model has $n=2$ and increases the allowed value of $H_0$ from 69.2 km/s/Mpc in $Lambda$CDM to 72.3 km/s/Mpc at $2sigma$. Future measurements of the late-time amplitude of matter fluctuations and of the reionization history could help distinguish these models from competing solutions.
New physics in the neutrino sector might be necessary to address anomalies between different neutrino oscillation experiments. Intriguingly, it also offers a possible solution to the discrepant cosmological measurements of $H_0$ and $sigma_8$. We sho w here that delaying the onset of neutrino free-streaming until close to the epoch of matter-radiation equality can naturally accommodate a larger value for the Hubble constant $H_0=72.3 pm 1.4$ km/s/Mpc and a lower value of the matter fluctuations $sigma_8=0.786pm 0.020$, while not degrading the fit to the cosmic microwave background (CMB) damping tail. We achieve this by introducing neutrino self-interactions in the presence of a non-vanishing sum of neutrino masses. This strongly interacting neutrino cosmology prefers $N_{rm eff} = 4.02 pm 0.29$, which has interesting implications for particle model-building and neutrino oscillation anomalies. We show that the absence of the neutrino free-streaming phase shift on the CMB can be compensated by shifting the value of other cosmological parameters, hence providing an important caveat to the detections made in the literature. Due to their impact on the evolution of the gravitational potential at early times, self-interacting neutrinos and their subsequent decoupling leave a rich structure on the matter power spectrum. In particular, we point out the existence of a novel localized feature appearing on scales entering the horizon at the onset of neutrino free-streaming. While the interacting neutrino cosmology provides a better global fit to current cosmological data, we find that traditional Bayesian analyses penalize the model as compared to the standard cosmological. Our analysis shows that it is possible to find radically different cosmological models that nonetheless provide excellent fits to the data, hence providing an impetus to thoroughly explore alternate cosmological scenarios.
In the cold dark matter (CDM) picture of structure formation, galaxy mass distributions are predicted to have a considerable amount of structure on small scales. Strong gravitational lensing has proven to be a useful tool for studying this small-scal e structure. Much of the attention has been given to detecting individual dark matter subhalos through lens modeling, but recent work has suggested that the full population of subhalos could be probed using a power spectrum analysis. In this paper we quantify the power spectrum of small-scale structure in simulated galaxies, with the goal of understanding theoretical predictions and setting the stage for using measurements of the power spectrum to test dark matter models. We use a sample of simulated galaxies generated from the texttt{Galacticus} semi-analytic model to determine the power spectrum distribution first in the CDM paradigm and then in a warm dark matter scenario. We find that a measurement of the slope and amplitude of the power spectrum on galaxy strong lensing scales ($ksim 1$ kpc$^{-1}$) could be used to distinguish between CDM and alternate dark matter models, especially if the most massive subhalos can be directly detected via gravitational imaging.
Gravitational lensing has emerged as a powerful probe of the matter distribution on subgalactic scales, which itself may contain important clues about the fundamental origins and properties of dark matter. Broadly speaking, two different approaches h ave been taken in the literature to map the small-scale structure of the Universe using strong lensing, with one focused on measuring the position and mass of a small number of discrete massive subhalos appearing close in projection to lensed images, and the other focused on detecting the collective effect of all the small-scale structure between the lensed source and the observer. In this paper, we follow the latter approach and perform a detailed study of the sensitivity of galaxy-scale gravitational lenses to the ensemble properties of small-scale structure. As in some previous studies, we adopt the language of the substructure power spectrum to characterize the statistical properties of the small-scale density field. We present a comprehensive theory that treats lenses with extended sources as well as those with time-dependent compact sources (such as quasars) in a unified framework for the first time. Our approach uses mode functions to provide both computational advantages and insights about couplings between the lens and source. The goal of this paper is to develop the theory and gain the intuition necessary to understand how the sensitivity to the substructure power spectrum depends on the source and lens properties, with the eventual aim of identifying the most promising targets for such studies.
Strong lensing is a sensitive probe of the small-scale density fluctuations in the Universe. We implement a novel approach to modeling strongly lensed systems using probabilistic cataloging, which is a transdimensional, hierarchical, and Bayesian fra mework to sample from a metamodel (union of models with different dimensionality) consistent with observed photon count maps. Probabilistic cataloging allows us to robustly characterize modeling covariances within and across lens models with different numbers of subhalos. Unlike traditional cataloging of subhalos, it does not require model subhalos to improve the goodness of fit above the detection threshold. Instead, it allows the exploitation of all information contained in the photon count maps, for instance, when constraining the subhalo mass function. We further show that, by not including these small subhalos in the lens model, fixed-dimensional inference methods can significantly mismodel the data. Using a simulated Hubble Space Telescope (HST) dataset, we show that the subhalo mass function can be probed even when many subhalos in the sample catalogs are individually below the detection threshold and would be absent in a traditional catalog. With the planned Wide Field Infrared Space Telescope (WFIRST), simultaneous probabilistic cataloging of dark subhalos in high-resolution, deep strong lens images has the potential to constrain the subhalo mass function at even lower masses.
We present the first simulations within an effective theory of structure formation (ETHOS), which includes the effect of interactions between dark matter and dark radiation on the linear initial power spectrum and dark matter self-interactions during non-linear structure formation. We simulate a Milky Way-like halo in four different dark matter models and the cold dark matter case. Our highest resolution simulation has a particle mass of $2.8times 10^4,{rm M}_odot$ and a softening length of $72.4,{rm pc}$. We demonstrate that all alternative models have only a negligible impact on large scale structure formation. On galactic scales, however, the models significantly affect the structure and abundance of subhaloes due to the combined effects of small scale primordial damping in the power spectrum and late time self-interactions. We derive an analytic mapping from the primordial damping scale in the power spectrum to the cutoff scale in the halo mass function and the kinetic decoupling temperature. We demonstrate that certain models within this extended effective framework that can alleviate the too-big-to-fail and missing satellite problems simultaneously, and possibly the core-cusp problem. The primordial power spectrum cutoff of our models naturally creates a diversity in the circular velocity profiles, which is larger than that found for cold dark matter simulations. We show that the parameter space of models can be constrained by contrasting model predictions to astrophysical observations. For example, some models may be challenged by the missing satellite problem if baryonic processes were to be included and even over-solve the too-big-to-fail problem; thus ruling them out.
We perform a detailed study of the weak interactions of standard model neutrinos with the primordial plasma and their effect on the resonant production of sterile neutrino dark matter. Motivated by issues in cosmological structure formation on small scales, and reported X-ray signals that could be due to sterile neutrino decay, we consider $7$ keV-scale sterile neutrinos. Oscillation-driven production of such sterile neutrinos occurs at temperatures $T gtrsim 100$ MeV, where we study two significant effects of weakly charged species in the primordial plasma: (1) the redistribution of an input lepton asymmetry; (2) the opacity for active neutrinos. We calculate the redistribution analytically above and below the quark-hadron transition, and match with lattice QCD calculations through the transition. We estimate opacities due to tree level processes involving leptons and quarks above the quark-hadron transition, and the most important mesons below the transition. We report final sterile neutrino dark matter phase space densities that are significantly influenced by these effects, and yet relatively robust to remaining uncertainties in the nature of the quark-hadron transition. We also provide transfer functions for cosmological density fluctuations with cutoffs at $k simeq 10 h {rm Mpc}^{-1}$, that are relevant to galactic structure formation.
In the standard structure formation scenario based on the cold dark matter paradigm, galactic halos are predicted to contain a large population of dark matter subhalos. While the most massive members of the subhalo population can appear as luminous s atellites and be detected in optical surveys, establishing the existence of the low mass and mostly dark subhalos has proven to be a daunting task. Galaxy-scale strong gravitational lenses have been successfully used to study mass substructures lying close to lensed images of bright background sources. However, in typical galaxy-scale lenses, the strong lensing region only covers a small projected area of the lenss dark matter halo, implying that the vast majority of subhalos cannot be directly detected in lensing observations. In this paper, we point out that this large population of dark satellites can collectively affect gravitational lensing observables, hence possibly allowing their statistical detection. Focusing on the region of the galactic halo outside the strong lensing area, we compute from first principles the statistical properties of perturbations to the gravitational time delay and position of lensed images in the presence of a mass substructure population. We find that in the standard cosmological scenario, the statistics of these lensing observables are well approximated by Gaussian distributions. The formalism developed as part of this calculation is very general and can be applied to any halo geometry and choice of subhalo mass function. Our results significantly reduce the computational cost of including a large substructure population in lens models and enable the use of Bayesian inference techniques to detect and characterize the distributed satellite population of distant lens galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا