ترغب بنشر مسار تعليمي؟ اضغط هنا

ETHOS - An Effective Theory of Structure Formation: Dark matter physics as a possible explanation of the small-scale CDM problems

91   0   0.0 ( 0 )
 نشر من قبل Mark Vogelsberger
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first simulations within an effective theory of structure formation (ETHOS), which includes the effect of interactions between dark matter and dark radiation on the linear initial power spectrum and dark matter self-interactions during non-linear structure formation. We simulate a Milky Way-like halo in four different dark matter models and the cold dark matter case. Our highest resolution simulation has a particle mass of $2.8times 10^4,{rm M}_odot$ and a softening length of $72.4,{rm pc}$. We demonstrate that all alternative models have only a negligible impact on large scale structure formation. On galactic scales, however, the models significantly affect the structure and abundance of subhaloes due to the combined effects of small scale primordial damping in the power spectrum and late time self-interactions. We derive an analytic mapping from the primordial damping scale in the power spectrum to the cutoff scale in the halo mass function and the kinetic decoupling temperature. We demonstrate that certain models within this extended effective framework that can alleviate the too-big-to-fail and missing satellite problems simultaneously, and possibly the core-cusp problem. The primordial power spectrum cutoff of our models naturally creates a diversity in the circular velocity profiles, which is larger than that found for cold dark matter simulations. We show that the parameter space of models can be constrained by contrasting model predictions to astrophysical observations. For example, some models may be challenged by the missing satellite problem if baryonic processes were to be included and even over-solve the too-big-to-fail problem; thus ruling them out.



قيم البحث

اقرأ أيضاً

219 - Mark R. Lovell 2018
A cutoff in the linear matter power spectrum at dwarf galaxy scales has been shown to affect the abundance, formation mechanism and age of dwarf haloes and their galaxies at high and low redshift. We use hydrodynamical simulations of galaxy formation within the ETHOS framework in a benchmark model that has such a cutoff, and that has been shown to be an alternative to the cold dark matter (CDM) model that alleviates its dwarf-scale challenges. We show how galaxies in this model form differently to CDM on a halo-by-halo basis, at redshifts $zge6$. We show that ETHOS haloes at the half-mode mass scale form with 50~per~cent less mass than their CDM counterparts due to their later formation times, yet they retain more of their gas reservoir due to the different behaviour of gas and dark matter during the monolithic collapse of the first haloes in models with a galactic-scale cutoff. As a result, galaxies in ETHOS haloes near the cutoff scale grow rapidly between $z=10-6$ and by $z=6$ end up having very similar stellar masses, higher gas fractions and higher star formation rates relative to their CDM counterparts. We highlight these differences by making predictions for how the number of galaxies with old stellar populations is suppressed in ETHOS for both $z=6$ galaxies and for gas-poor Local Group fossil galaxies. Interestingly, we find an age gradient in ETHOS between galaxies that form in high and low density environments.
97 - Mark R. Lovell 2017
We contrast predictions for the high-redshift galaxy population and reionization history between cold dark matter (CDM) and an alternative self-interacting dark matter model based on the recently developed ETHOS framework that alleviates the small-sc ale CDM challenges within the Local Group. We perform the highest resolution hydrodynamical cosmological simulations (a 36~Mpc$^3$ volume with gas cell mass of $sim10^5mathrm{M}_{odot}$ and minimum gas softening of $sim180$~pc) within ETHOS to date -- plus a CDM counterpart -- to quantify the abundance of galaxies at high redshift and their impact on reionization. We find that ETHOS predicts galaxies with higher ultraviolet (UV) luminosities than their CDM counterparts and a faster build-up of the faint end of the UV luminosity function. These effects, however, make the optical depth to reionization less sensitive to the power spectrum cut-off: the ETHOS model differs from the CDM $tau$ value by only 10 per cent and is consistent with Planck limits if the effective escape fraction of UV photons is 0.1-0.5. We conclude that current observations of high-redshift luminosity functions cannot differentiate between ETHOS and CDM models, but deep JWST surveys of strongly-lensed, inherently faint galaxies have the potential to test non-CDM models that offer attractive solutions to CDMs Local Group problems.
We study the atomic physics and the astrophysical implications of a model in which the dark matter is the analog of hydrogen in a secluded sector. The self interactions between dark matter particles include both elastic scatterings as well as inelast ic processes due to a hyperfine transition. The self-interaction cross sections are computed by numerically solving the coupled Schr{o}dinger equations for this system. We show that these self interactions exhibit the right velocity dependence to explain the low dark matter density cores seen in small galaxies while being consistent with all constraints from observations of clusters of galaxies. For a viable solution, the dark hydrogen mass has to be in 10--100 GeV range and the dark fine-structure constant has to be larger than 0.02. Precisely for this range of parameters, we show that significant cooling losses may occur due to inelastic excitations to the hyperfine state and subsequent decays, with implications for the evolution of low-mass halos and the early growth of supermassive black holes. Cooling from excitations to higher $n$ levels of dark hydrogen and subsequent decays is possible at the cluster scale, with a strong dependence on halo mass. Finally, we show that the minimum halo mass is in the range of $10^{3.5}$ to $10^7 M_odot$ for the viable regions of parameter space, significantly larger than the typical predictions for weakly-interacting dark matter models. This pattern of observables in cosmological structure formation is unique to this model, making it possible to rule in or rule out hidden sector hydrogen as a viable dark matter model.
The lightest supersymmetric particle, most likely the lightest neutralino, is one of the most prominent particle candidates for cold dark matter (CDM). We show that the primordial spectrum of density fluctuations in neutralino CDM has a sharp cut-off , induced by two different damping mechanisms. During the kinetic decoupling of neutralinos, non-equilibrium processes constitute viscosity effects, which damp or even absorb density perturbations in CDM. After the last scattering of neutralinos, free streaming induces neutralino flows from overdense to underdense regions of space. Both damping mechanisms together define a minimal mass scale for perturbations in neutralino CDM, before the inhomogeneities enter the nonlinear epoch of structure formation. We find that the very first gravitationally bound neutralino clouds ought to have masses above 10^{-6} solar masses, which is six orders of magnitude above the mass of possible axion miniclusters.
140 - Sebastian Bohr 2020
We propose two effective parameters that fully characterise galactic-scale structure formation at high redshifts ($zgtrsim5$) for a variety of dark matter (DM) models that have a primordial cutoff in the matter power spectrum. Our description is with in the recently proposed ETHOS framework and includes standard thermal Warm DM (WDM) and models with dark acoustic oscillations (DAOs). To define and explore this parameter space, we use high-redshift zoom-in simulations that cover a wide range of non-linear scales from those where DM should behave as CDM ($ksim10,h,{rm Mpc}^{-1}$), down to those characterised by the onset of galaxy formation ($ksim500,h,{rm Mpc}^{-1}$). We show that the two physically motivated parameters $h_{rm peak}$ and $k_{rm peak}$, the amplitude and scale of the first DAO peak, respectively, are sufficient to parametrize the linear matter power spectrum and classify the DM models as belonging to effective non-linear structure formation regions. These are defined by their relative departure from Cold DM ($k_{rm peak}rightarrowinfty$) and WDM ($h_{rm peak}=0$) according to the non-linear matter power spectrum and halo mass function. We identify a region where the DAOs still leave a distinct signature from WDM down to $z=5$, while a large part of the DAO parameter space is shown to be degenerate with WDM. Our framework can then be used to seamlessly connect a broad class of particle DM models to their structure formation properties at high redshift without the need of additional $N$-body simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا