ترغب بنشر مسار تعليمي؟ اضغط هنا

The 30-Hz rotation rate of the Crab pulsar has been monitored at Jodrell Bank Observatory since 1984 and by other observatories before then. Since 1968, the rotation rate has decreased by about $0.5$,Hz, interrupted only by sporadic and small spin up events (glitches). 24 of these events have been observed, including a significant concentration of 15 occurring over an interval of 11 years following MJD 50000. The monotonic decrease of the slowdown rate is partially reversed at glitches. This reversal comprises a step and an asymptotic exponential with a 320-day time constant, as determined in the three best-isolated glitches. The cumulative effect of all glitches is to reduce the decrease in slowdown rate by about 6%. Overall, a low mean braking index of $2.342(1)$ is measured for the whole period, compared with values close to $2.5$ in intervals between glitches. Removing the effects of individual glitches reveals an underlying power law slowdown with the same braking index of 2.5. We interpret this value in terms of a braking torque due to a dipolar magnetic field in which the inclination angle between the dipole and rotation axes is increasing. There may also be further effects due to a monopolar particle wind or infalling supernova debris.
Pulsars are highly-magnetised rotating neutron stars and are well-known for the stability of their signature pulse shapes, allowing high-precision studies of their rotation. However, during the past 22 years, the radio pulse profile of the Crab pulsa r has shown a steady increase in the separation of the main pulse and interpulse components at 0.62$^{rm o}pm$0.03$^{rm o}$ per century. There are also secular changes in the relative strengths of several components of the profile. The changing component separation indicates that the axis of the dipolar magnetic field, embedded in the neutron star, is moving towards the stellar equator. This evolution of the magnetic field could explain why the pulsar does not spin down as expected from simple braking by a rotating dipolar magnetic field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا