ترغب بنشر مسار تعليمي؟ اضغط هنا

45 Years of Rotation of the Crab Pulsar

133   0   0.0 ( 0 )
 نشر من قبل Andrew Lyne
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The 30-Hz rotation rate of the Crab pulsar has been monitored at Jodrell Bank Observatory since 1984 and by other observatories before then. Since 1968, the rotation rate has decreased by about $0.5$,Hz, interrupted only by sporadic and small spin up events (glitches). 24 of these events have been observed, including a significant concentration of 15 occurring over an interval of 11 years following MJD 50000. The monotonic decrease of the slowdown rate is partially reversed at glitches. This reversal comprises a step and an asymptotic exponential with a 320-day time constant, as determined in the three best-isolated glitches. The cumulative effect of all glitches is to reduce the decrease in slowdown rate by about 6%. Overall, a low mean braking index of $2.342(1)$ is measured for the whole period, compared with values close to $2.5$ in intervals between glitches. Removing the effects of individual glitches reveals an underlying power law slowdown with the same braking index of 2.5. We interpret this value in terms of a braking torque due to a dipolar magnetic field in which the inclination angle between the dipole and rotation axes is increasing. There may also be further effects due to a monopolar particle wind or infalling supernova debris.



قيم البحث

اقرأ أيضاً

182 - A. McCann 2013
The Fermi space telescope has detected over 100 pulsars. These discoveries have ushered in a new era of pulsar astrophysics at gamma-ray energies. Gamma-ray pulsars, regardless of whether they are young, old, radio-quiet etc, all exhibit a seemingly unifying characteristic: a spectral energy distribution which takes the form of a power law with an exponential cut-off occurring between ~1 and ~10 GeV. The single known exception to this is the Crab pulsar, which was recently discovered to emit pulsed gamma rays at energies exceeding a few hundred GeV. Here we present an update on observations of the Crab pulsar above 100 GeV with VERITAS. We show some new results from a joint gamma-ray/radio observational campaign to search for a correlation between giant radio pulses and pulsed VHE emission from the Crab pulsar. We also present some preliminary results on Lorentz invariance violation tests performed using Fermi and VERITAS observations of the Crab pulsar.
We study dynamics of drift waves in the pair plasma of pulsar magnetosphere. It is shown that nonlinear of the drift waves with plasma particles leads to the formation of small scale structures. We show that cyclotron instability developed within the se nonlinear structures can be responsible for the formation of nanoshots discovered in the radio emission of the Crab pulsar.
Optical observations provide convincing evidence that the optical phase of the Crab pulsar follows the radio one closely. Since optical data do not depend on dispersion measure variations, they provide a robust and independent confirmation of the rad io timing solution. The aim of this paper is to find a global mathematical description of Crab pulsars phase as a function of time for the complete set of published Jodrell Bank radio ephemerides (JBE) in the period 1988-2014. We apply the mathematical techniques developed for analyzing optical observations to the analysis of JBE. We break the whole period into a series of episodes and express the phase of the pulsar in each episode as the sum of two analytical functions. The first function is the best-fitting local braking index law, and the second function represents small residuals from this law with an amplitude of only a few turns, which rapidly relaxes to the local braking index law. From our analysis, we demonstrate that the power law index undergoes instantaneous changes at the time of observed jumps in rotational frequency (glitches). We find that the phase evolution of the Crab pulsar is dominated by a series of constant braking law episodes, with the braking index changing abruptly after each episode in the range of values between 2.1 and 2.6. Deviations from such a regular phase description behave as oscillations triggered by glitches and amount to fewer than 40 turns during the above period, in which the pulsar has made more than 2.0e10 turns. Our analysis does not favor the explanation that glitches are connected to phenomena occurring in the interior of the pulsar. On the contrary, timing irregularities and changes in slow down rate seem to point to electromagnetic interaction of the pulsar with the surrounding environment.
72 - Roberta Zanin 2017
The last six years have witnessed major revisions of our knowledge about the Crab Pulsar. The consensus scenario for the origin of the high-energy pulsed emission has been challenged with the discovery of a very-high-energy power law tail extending u p to 400 GeV, above the expected spectral cut off at a few GeV. Now, new measurements obtained by the MAGIC collaboration extend the energy spectrum of the Crab Pulsar even further, on the TeV regime. Above 400 GeV the pulsed emission comes mainly from the inter-pulse, which becomes more prominent with energy due to a harder spectral index. These findings require gamma-ray production via inverse Compton scattering close to or beyond the light cylinder radius by an underlying particle population with Lorentz factors greater than 5 times 106. We will present those new results and discuss the implications in our current knowledge concerning pulsar environments.
We observed the Crab pulsar in October 2008 at the Copernico Telescope in Asiago - Cima Ekar with the optical photon counter Aqueye (the Asiago Quantum Eye) which has the best temporal resolution and accuracy ever achieved in the optical domain (hund reds of picoseconds). Our goal was to perform a detailed analysis of the optical period and phase drift of the main peak of the Crab pulsar and compare it with the Jodrell Bank ephemerides. We determined the position of the main peak using the steepest zero of the cross-correlation function between the pulsar signal and an accurate optical template. The pulsar rotational period and period derivative have been measured with great accuracy using observations covering only a 2 day time interval. The error on the period is 1.7 ps, limited only by the statistical uncertainty. Both the rotational frequency and its first derivative are in agreement with those from the Jodrell Bank radio ephemerides archive. We also found evidence of the optical peak leading the radio one by ~230 microseconds. The distribution of phase-residuals of the whole dataset is slightly wider than that of a synthetic signal generated as a sequence of pulses distributed in time with the probability proportional to the pulse shape, such as the average count rate and background level are those of the Crab pulsar observed with Aqueye. The counting statistics and quality of the data allowed us to determine the pulsar period and period derivative with great accuracy in 2 days only. The time of arrival of the optical peak of the Crab pulsar leads the radio one in agreement with what recently reported in the literature. The distribution of the phase residuals can be approximated with a Gaussian and is consistent with being completely caused by photon noise (for the best data sets).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا