ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that accelerated gradient descent, averaged gradient descent and the heavy-ball method for non-strongly-convex problems may be reformulated as constant parameter second-order difference equation algorithms, where stability of the system is eq uivalent to convergence at rate O(1/n 2), where n is the number of iterations. We provide a detailed analysis of the eigenvalues of the corresponding linear dynamical system , showing various oscillatory and non-oscillatory behaviors, together with a sharp stability result with explicit constants. We also consider the situation where noisy gradients are available, where we extend our general convergence result, which suggests an alternative algorithm (i.e., with different step sizes) that exhibits the good aspects of both averaging and acceleration.
We consider the least-squares regression problem and provide a detailed asymptotic analysis of the performance of averaged constant-step-size stochastic gradient descent (a.k.a. least-mean-squares). In the strongly-convex case, we provide an asymptot ic expansion up to explicit exponentially decaying terms. Our analysis leads to new insights into stochastic approximation algorithms: (a) it gives a tighter bound on the allowed step-size; (b) the generalization error may be divided into a variance term which is decaying as O(1/n), independently of the step-size $gamma$, and a bias term that decays as O(1/$gamma$ 2 n 2); (c) when allowing non-uniform sampling, the choice of a good sampling density depends on whether the variance or bias terms dominate. In particular, when the variance term dominates, optimal sampling densities do not lead to much gain, while when the bias term dominates, we can choose larger step-sizes that leads to significant improvements.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا