ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on data obtained with the Chandra, XMM-Newton, Suzaku and Swift X-ray observatories, following the 2006 outburst of the Anomalous X-ray Pulsar CXO J164710.2-455216. We find no evidence for the very large glitch and rapid exponential decay a s was reported previously for this source. We set a 3 sigma upper limit on any fractional frequency increase at the time of the outburst of Delta nu/nu < 1.5 x 10^{-5}. Our timing analysis, based on the longest time baseline yet, yields a spin-down rate for the pulsar that implies a surface dipolar magnetic field of ~9 x 10^{13} G, although this could be biased high by possible recovery from an undetected glitch. We also present an analysis of the source flux and spectral evolution, and find no evidence for long-term spectral relaxation post-outburst as was previously reported.
196 - Fotis P. Gavriil 2009
We report on Chandra X-ray Observatory (CXO) High-Energy Transmission Grating (HETG) spectra of the dipping Low Mass X-ray Binary (LMXB) 1A 1744-361 during its July 2008 outburst. We find that its persistent emission is well modeled by a blackbody (k T ~ 1.0 keV) plus power-law ($Gamma$ ~ 1.7) with an absorption edge at 7.6 keV. In the residuals of the combined spectrum we find a significant absorption line at 6.961+/-0.002 keV, consistent with the Fe XXVI (hydrogen-like Fe) 2 - 1 transition. We place an upper limit on the velocity of a redshifted flow of v < 221 km/s. We find an equivalent width for the line of 27^+2_-3 eV, from which we determine a column density of 7+/-1x10^17 cm^-2 via a curve-of-growth analysis. Using XSTAR simulations, we place a lower limit on the ionization parameter of > 10^3.6 erg cm/s. The properties of this line are consistent with those observed in other dipping LMXBs. Using Rossi X-ray Timing Explorer (RXTE) data accumulated during this latest outburst we present an updated color-color diagram which clearly shows that 1A 1744-361 is an atoll source. Finally, using additional dips found in the RXTE and CXO data we provide an updated orbital period estimate of 52+/-5 minutes.
After three years of no unusual activity, Anomalous X-ray Pulsar 1E 1048.1-5937 reactivated in 2007 March. We report on the detection of a large glitch (Delta(nu)/nu =1.63(2)X~10^{-5}) on 2007 March 26 (MJD 54185.9), contemporaneous with the onset of a pulsed-flux flare, the third flare observed from this source in 10 years of monitoring with the Rossi X-ray Timing Explorer. Additionally, we report on a detailed study of the evolution of the timing properties, the pulsed flux, and the pulse profile of this source as measured by RXTE from 1996 July to 2008 January. In our timing study, we attempted phase coherent timing of all available observations. We show that in 2001, a timing anomaly of uncertain nature occurred near the rise of the first pulsed flux flare; we show that a likely glitch (Delta(nu)/nu =2.91(9)X10^{-6}) occurred in 2002, near the rise of the second flare, and we present a detailed description of the variations in the spin-down. In our pulsed flux study, we compare the decays of the three flares and discuss changes in the hardness ratio. In our pulse profile study, we show that the profile exhibited large variations near the peak of the first two flares, and several small short-term profile variations during the most recent flare. Finally, we report on the discovery of a small burst 27 days after the peak of the last flare, the fourth burst discovered from this source. We discuss the relationships between the observed properties in the framework of the magnetar model.
After at least 6 years of quiescence, Anomalous X-ray Pulsar (AXP) 4U 0142+61 entered an active phase in 2006 March that lasted several months and included six X-ray bursts as well as many changes in the persistent X-ray emission. The bursts, the fir st seen from this AXP in >11 years of Rossi X-ray Timing Explorer monitoring, all occurred in the interval between 2006 April 6 and 2007 February 7. The burst durations ranged from 0.4-1.8times103 s. The first five burst spectra are well modeled by blackbodies, with temperatures kT ~ 2-9 keV. However, the sixth burst had a complicated spectrum that is well characterized by a blackbody plus two emission features whose amplitude varied throughout the burst. The most prominent feature was at 14.0 keV. Upon entry into the active phase the pulsar showed a significant change in pulse morphology and a likely timing glitch. The glitch had a total frequency jump of (1.9pm0.4)times10-7 Hz, which recovered with a decay time of 17pm 2 days by more than the initial jump, implying a net spin-down of the pulsar. Within the framework of the magnetar model, the net spin-down of the star could be explained by regions of the superfluid that rotate slower than the rest. The bursts, flux enhancements, and pulse morphology changes can be explained as arising from crustal deformations due to stresses imposed by the highly twisted internal magnetic field. However, unlike other AXP outbursts, we cannot account for a major twist being implanted in the magnetosphere.
123 - Fotis P. Gavriil 2007
After 6 years of quiescence, Anomalous X-ray Pulsar (AXP) 4U 0142+61 entered an active phase in 2006 March that lasted several months. During the active phase, several bursts were detected, and many aspects of the X-ray emission changed. We report on the discovery of six X-ray bursts, the first ever seen from this AXP in ~10 years of Rossi X-ray Timing Explorer (RXTE) monitoring. All the bursts occurred in the interval between 2006 April 6 and 2007 February 7. The bursts had the canonical fast rise slow decay profiles characteristic of SGR/AXP bursts. The burst durations ranged from 8-3x10^3 s as characterized by T90,these are very long durations even when compared to the broad T90 distributions of other bursts from SGRs and AXPs. The first five burst spectra are well modeled by simple blackbodies, with temperature kT ~2-6 keV. However, the sixth burst had a complicated spectrum consisting of at least three emission lines with possible additional emission and absorption lines. The most significant feature was at ~14 keV. Similar 14-keV spectral features were seen in bursts from AXPs 1E 1048.1-5937 and XTE J1810-197. If this feature is interpreted as a proton cyclotron line, then it supports the existence of a magnetar-strength field for these AXPs. Several of the bursts were accompanied by a short-term pulsed flux enhancement. We discuss these events in the context of the magnetar model.
239 - Cindy R. Tam 2007
We present the results of X-ray and near-IR observations of the anomalous X-ray pulsar 1E 1048.1-5937, believed to be a magnetar. This AXP underwent a period of extreme variability during 2001-2004, but subsequently entered an extended and unexpected quiescence in 2004-2006, during which we monitored it with RXTE, CXO, and HST. Its timing properties were stable for >3 years throughout the quiescent period. 1E 1048.1-5937 again went into outburst in March 2007, which saw a factor of >7 total X-ray flux increase which was anti-correlated with a pulsed fraction decrease, and correlated with spectral hardening, among other effects. The near-IR counterpart also brightened following the 2007 event. We discuss our findings in the context of the magnetar and other models.
95 - Cindy R. Tam 2007
(Abridged) We report on new and archival X-ray and near-infrared observations of the anomalous X-ray pulsar 1E 1048.1-5937 performed between 2001-2007 with RXTE, CXO, Swift, HST, and VLT. During its ~2001-2004 active period, 1E 1048.-5937 exhibited t wo large, long-term X-ray pulsed-flux flares as well as short bursts, and large (>10x) torque changes. Monitoring with RXTE revealed that the source entered a phase of timing stability in 2004; at the same time, a series of four simultaneous observations with CXO and HST in 2006 showed that its X-ray flux and spectrum and near-IR flux, all variable prior to 2005, stabilized. The near-IR flux, when detected by HST (H~22.7 mag) and VLT (K_S~21.0 mag), was considerably fainter than previously measured. Recently, in 2007 March, this newfound quiescence was interrupted by a sudden flux enhancement, X-ray spectral changes and a pulse morphology change, simultaneous with a large spin-up glitch and near-IR enhancement. Our RXTE observations revealed a sudden pulsed flux increase by a factor of ~3 in the 2-10 keV band. In observations with CXO and Swift, we found that the total X-ray flux increased much more than the pulsed flux, reaching a peak value of >7 times the quiescent value (2-10 keV). With these recent data, we find a strong anti-correlation between X-ray flux and pulsed fraction, and a correlation between X-ray spectral hardness and flux. Simultaneously with the radiative and timing changes, we observed a significant X-ray pulse morphology change such that the profile went from nearly sinusoidal to having multiple peaks. We compare these remarkable events with other AXP outbursts and discuss implications in the context of the magnetar model and other models of AXP emission.
(Abridged) We report on 8.7 and 7.6 yr of RXTE observations of the Anomalous X-ray Pulsars (AXPs) RXS J170849.0-400910 and 1E 1841-045, respectively. These observations, part of a larger RXTE AXP monitoring program, have allowed us to study the long- term timing, pulsed flux, and pulse profile evolution of these objects. We report on four new glitches, one from RXS J170849.0-400910 and three from 1E 1841-045. With nearly all known persistent AXPs now seen to glitch, such behavior is clearly generic to this source class. We show that in terms of fractional frequency change, AXPs are among the most actively glitching neutron stars. However, in terms of absolute glitch amplitude, AXP glitches are unremarkable. We show that the largest AXP glitches observed thus far have recoveries that are unusual among those of radio pulsar glitches, with the combination of recovery time scale and fraction yielding changes in spin-down rates following the glitch similar to, or larger than, the long-term average. We also observed a large long-term fractional increase in the magnitude of the spin-down rate of 1E 1841-045 following its largest glitch. These observations are challenging to interpret in standard glitch models, as is the frequent occurence of large glitches given AXPs high measured temperatures. We speculate that the stellar core may be involved in the largest AXP glitches. Furthermore, we show that AXP glitches appear to fall in two classes: radiatively loud and radiatively quiet. The latter, of which the glitches of J170849.0-400910 and 1E 1841-045 are examples, show little evidence for an accompanying radiative event. We also show, however, that pulse profile and pulsed flux changes are common in these AXPs, but do not apprear closely correlated with any timing behavior.
We report on the serendipitous discovery of a 442-Hz pulsar during a Rossi X-ray Timing Explorer (RXTE) observation of the globular cluster NGC 6440. The oscillation is detected following a burst-like event which was decaying at the beginning of the observation. The time scale of the decay suggests we may have seen the tail-end of a long-duration burst. Low-mass X-ray binaries (LMXBs) are known to emit thermonuclear X-ray bursts that are sometimes modulated by the spin frequency of the star, the so called burst oscillations. The pulsations reported here are peculiar if interpreted as canonical burst oscillations. In particular, the pulse train lasted for ~500 s, much longer than in standard burst oscillations. The signal was highly coherent and drifted down by ~2x10^-3 Hz, much smaller than the ~Hz drifts typically observed during normal bursts. The pulsations are reminiscent of those observed during the much more energetic ``superbursts, however, the temporal profile and the energetics of the burst suggest that it was not the tail end nor the precursor feature of a superburst. It is possible that we caught the tail end of an outburst from a new `intermittent accreting X-ray millisecond pulsar, a phenomenon which until now has only been seen in HETE J1900.1$-$2455 (Galloway et al. 2007). We note that (Kaaret et al. 2003) reported the discovery of a 409.7 Hz burst oscillation from SAX J1748.9-2021, also located in NGC 6440. However, Chandra X-ray Observatory imaging indicates it contains several point-like X-ray sources, thus the 442 Hz object is likely a different source.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا