ترغب بنشر مسار تعليمي؟ اضغط هنا

Vlasov solvers that operate on a phase-space grid are highly accurate but also numerically demanding. Coarse velocity space resolutions, which are unproblematic in particle-in-cell (PIC) simulations, lead to strong numerical heating or oscillations i n standard continuum Vlasov methods. We present a new dual Vlasov solver which is based on an established positivity preserving advection scheme for the update of the distribution function and an energy conserving partial differential equation solver for the kinetic update of mean velocity and temperature. The solvers work together via moment fitting during which the maximum entropy part of the distribution function is replaced by the solution from the partial differential equation solver. This numerical scheme makes continuum Vlasov methods competitive with PIC methods concerning computational cost and enables us to model large scale reconnection in Earths magnetosphere with a fully kinetic continuum method. The simulation results agree well with measurements by the MMS spacecraft.
Recent efforts to include kinetic effects in fluid simulations of plasmas have been very promising. Concerning collisionless magnetic reconnection, it has been found before that damping of the pressure tensor to isotropy leads to good agreement with kinetic runs in certain scenarios. An accurate representation of kinetic effects in reconnection was achieved in a study by Wang et al. (Phys. Plasmas, volume 22, 2015, 012108) with a closure derived from earlier work by Hammett and Perkins (PRL, volume 64, 1990, 3019). Here, their approach is analyzed on the basis of heat flux data from a Vlasov simulation. As a result, we propose a new local closure in which heat flux is driven by temperature gradients. That way, a more realistic approximation of Landau damping in the collisionless regime is achieved. Previous issues are addressed and the agreement with kinetic simulations in different reconnection setups is improved significantly. To the authors knowledge, the new fluid model is the first to perform well in simulations of the coalescence of large magnetic islands.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا