ترغب بنشر مسار تعليمي؟ اضغط هنا

An Energy Conserving Vlasov Solver That Tolerates Coarse Velocity Space Resolutions: Simulation of MMS Reconnection Events

176   0   0.0 ( 0 )
 نشر من قبل Rainer Grauer
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Vlasov solvers that operate on a phase-space grid are highly accurate but also numerically demanding. Coarse velocity space resolutions, which are unproblematic in particle-in-cell (PIC) simulations, lead to strong numerical heating or oscillations in standard continuum Vlasov methods. We present a new dual Vlasov solver which is based on an established positivity preserving advection scheme for the update of the distribution function and an energy conserving partial differential equation solver for the kinetic update of mean velocity and temperature. The solvers work together via moment fitting during which the maximum entropy part of the distribution function is replaced by the solution from the partial differential equation solver. This numerical scheme makes continuum Vlasov methods competitive with PIC methods concerning computational cost and enables us to model large scale reconnection in Earths magnetosphere with a fully kinetic continuum method. The simulation results agree well with measurements by the MMS spacecraft.

قيم البحث

اقرأ أيضاً

We present a Vlasov-DArwin numerical code (ViDA) specifically designed to address plasma physics problems, where small-scale high accuracy is requested even during the non linear regime to guarantee a clean description of the plasma dynamics at fine spatial scales. The algorithm provides a low-noise description of proton and electron kinetic dynamics, by splitting in time the multi-advection Vlasov equation in phase space. Maxwell equations for the electric and magnetic fields are reorganized according to Darwin approximation to remove light waves. Several numerical tests show that ViDA successfully reproduces the propagation of linear and nonlinear waves and captures the physics of magnetic reconnection. We also discuss preliminary tests of the parallelization algorithm efficiency, performed at CINECA on the Marconi-KNL cluster. ViDA will allow to run Eulerian simulations of a non-relativistic fully-kinetic collisionless plasma and it is expected to provide relevant insights on important problems of plasma astrophysics such as, for instance, the development of the turbulent cascade at electron scales and the structure and dynamics of electron-scale magnetic reconnection, such as the electron diffusion region.
263 - Yichen Fu , Xin Zhang , Hong Qin 2020
We develop an Explicitly Solvable Energy-Conserving (ESEC) algorithm for the Stochastic Differential Equation (SDE) describing the pitch-angle scattering process in magnetized plasmas. The Cayley transform is used to calculate both the deterministic gyromotion and stochastic scattering, affording the algorithm to be explicitly solvable and exactly energy conserving. An unusual property of the SDE for pitch-angle scattering is that its coefficients diverge at the zero velocity and do not satisfy the global Lipschitz condition. Consequently, when standard numerical methods, such as the Euler-Maruyama (EM), are applied, numerical convergence is difficult to establish. For the proposed ESEC algorithm, its energy-preserving property enables us to overcome this obstacle. We rigorously prove that the ESEC algorithm is order 1/2 strongly convergent. This result is confirmed by detailed numerical studies. For the case of pitch-angle scattering in a magnetized plasma with a constant magnetic field, the numerical solution is benchmarked against the analytical solution, and excellent agreements are found.
Dynamic mitigation is presented for filamentation instability and magnetic reconnection in a plasm driven by a wobbling electron sheet current. The wobbling current introduces an oscillating perturbation and smooths the perturbation. The sheet curren t creates an anti-parallel magnetic field in plasma. The initial small perturbation induces the electron beam filamentation and the magnetic reconnection. When the wobbling or oscillation motion is added to the sheet electron beam along the sheet current surface, the perturbation phase is mixed and consequently the instability growth is delayed remarkably. Normally plasma instabilities are discussed by the growth rate, because it would be difficult to measure or detect the phase of the perturbations in plasmas. However, the phase of perturbation can be controlled externally, for example, by the driver wobbling motion. The superimposition of perturbations introduced actively results in the perturbation smoothing, and the instability growth can be reduced, like feed-forward control.
To explain energy dissipation via turbulence in collisionless, magnetized plasmas, the existence of a dual real- and velocity-space cascade of ion-entropy fluctuations below the ion gyroradius has been proposed. Such a dual cascade, predicted by the gyrokinetic theory, has previously been observed in gyrokinetic simulations of two-dimensional, electrostatic turbulence. For the first time we show evidence for a dual phase-space cascade of ion-entropy fluctuations in a three-dimensional simulation of hybrid-kinetic, electromagnetic turbulence. Some of the scalings observed in the energy spectra are consistent with a generalized theory for the cascade that accounts for the spectral anisotropy of critically balanced, intermittent, sub-ion-Larmor-scale fluctuations. The observed velocity-space cascade is also anisotropic with respect to the magnetic-field direction, with linear phase mixing along magnetic-field lines proceeding mainly at spatial scales above the ion gyroradius and nonlinear phase mixing across magnetic-field lines proceeding at perpendicular scales below the ion gyroradius. Such phase-space anisotropy could be sought in heliospheric and magnetospheric data of solar-wind turbulence and has far-reaching implications for the dissipation of turbulence in weakly collisional astrophysical plasmas.
Plasma turbulence is investigated using high-resolution ion velocity distributions measured by the Magnetospheric Multiscale Mission (MMS) in the Earths magnetosheath. The particle distribution is highly structured, suggesting a cascade-like process in velocity space. This complex velocity space structure is investigated using a three-dimensional Hermite transform that reveals a power law distribution of moments. In analogy to hydrodynamics, a Kolmogorov approach leads directly to a range of predictions for this phase-space cascade. The scaling theory is in agreement with observations, suggesting a new path for the study of plasma turbulence in weakly collisional space and astrophysical plasmas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا