ترغب بنشر مسار تعليمي؟ اضغط هنا

We review heavy quark flavor and spin symmetries, their exploitation in heavy meson effective theories and the flavored couplings of charmed and light mesons in the definition of their effective Lagrangians. We point out how nonperturbative continuum QCD approaches based on Dyson-Schwinger and Bethe-Salpeter equations can be used to calculate strong and leptonic decays of open-charm mesons and heavy quarkonia. The strong decay $D^*to Dpi$ serves as a benchmark, as it is the only physical open-charm observable that can be related to the effective Lagrangians couplings. Nonetheless, a quantitative comparison of $D^*Dpi$, $rho DD$, $rho D^*D$ and $rho D^* D^*$ couplings for a range of off-shell momenta of the $rho$-meson invalidates SU(4)$_F$ symmetry relations between these couplings. Thus, besides the breaking of flavor symmetry by mass terms in the Lagrangians, the flavor-symmetry breaching in couplings and their dependence on the $rho$-meson virtuality cannot be ignored. We also take the opportunity to present new results for the effective $J/psi DD$ and $J/psi D^*D$ couplings. We conclude this contribution with a discussion on how the description of pseudoscalar and vector $D$, $D_s$, $B$ and $B_s$ meson properties can be drastically improved with a modest modification of the flavor-dependence in the Bethe-Salpeter equation.
In this work we use the framework of the Dyson-Schwinger and Bethe-Salpeter equations to compute Light-Cone Distribution Amplitudes of heavy-light mesons and quarkonia. In studying the meson properties, we introduce a flavor dependence in the heavy-q uark sector of the Bethe-Salpeter ladder kernel which yields improved numerical results for masses and leptonic decay constants of the pseudoscalar $D$, $D_s$, $B$ and $B_s$ mesons. Finally, the corresponding heavy-light Bethe-Salpeter amplitudes are projected onto the light front and we reconstruct the distribution amplitudes of the mesons in the full theory.
The ladder kernel of the Bethe-Salpeter equation is amended by introducing a different flavor dependence of the dressing functions in the heavy-quark sector. Compared with earlier work this allows for the simultaneous calculation of the mass spectrum and leptonic decay constants of light pseudoscalar mesons, the $D_u$, $D_s$, $B_u$, $B_s$ and $B_c$ mesons and the heavy quarkonia $eta_c$ and $eta_b$ within the same framework at a physical pion mass. The corresponding Bethe-Salpeter amplitudes are projected onto the light front and we reconstruct the distribution amplitudes of the mesons in the full theory. A comparison with the first inverse moment of the heavy meson distribution amplitude in heavy quark effective theory is made.
The relative contributions of explicit and dynamical chiral symmetry breaking in QCD models of the quark-gap equation are studied in dependence of frequently employed ansatze for the dressed interaction and quark-gluon vertex. The explicit symmetry b reaking contributions are defined by a constituent-quark sigma term whereas the combined effects of explicit and dynamical symmetry breaking are described by a Euclidean constituent-mass solution. We extend this study of the gap equation to a quark-gluon vertex beyond the Abelian approximation complemented with numerical gluon- and ghost-dressing functions from lattice QCD. We find that the ratio of the sigma term over the Euclidean mass is largely independent of nonperturbative interaction and vertex models for current-quark masses, $m_{u,d}(mu) leq m(mu) leq m_b(mu)$, and equal contributions of explicit and dynamical chiral symmetry breaking occur at $m(mu) approx 400$~MeV. For massive solutions of the gap equation with lattice propagators this value decreases to about 200~MeV.
We have calculated quark and anti-quark relaxation time by considering different possible elastic and inelastic scatterings in the medium. Comparative role of these elastic and inelastic scatterings on different transport coefficients are explored. T he quark-meson effective interaction Lagrangian density in the framework of Nambu--Jona-Lasinio model is used for calculating both type of scatterings. Owing to a kinetic threshold, inelastic scatterings can only exist beyond the Mott line in temperature and chemical potential plane, whereas elastic scatterings occur in the entire plane. Interestingly, the strength of inelastic scatterings near and above Mott line becomes so strong that medium behaves like a perfect fluid, in that all transport coefficients become very small.
A symmetry-preserving treatment of a vector-vector contact interaction is used to study charmed heavy-light mesons. The contact interaction is a representation of nonperturbative kernels used in Dyson-Schwinger and Bethe-Salpeter equations of QCD. Th e Dyson-Schwinger equation is solved for the $u,,d,,s$ and $c$ quark propagators and the bound-state Bethe-Salpeter amplitudes respecting spacetime-translation invariance and the Ward-Green-Takahashi identities associated with global symmetries of QCD are obtained to calculate masses and electroweak decay constants of the pseudoscalar $pi,,K$, $D$ and $D_s$ and vector $rho$, $K^*$, $D^*$, and $D^*_s$ mesons. The predictions of the model are in good agreement with available experimental and lattice QCD data.
We compute the masses of the pseudoscalar mesons $pi^+$ , $K^0$ and $D^+$ at finite temperature and baryon chemical potential. The computations are based on a symmetry- preserving Dyson-Schwinger equation treatment of a vector-vector four quark conta ct interaction. The results found for the temperature dependence of the meson masses are in qualitative agreement with lattice QCD data and QCD sum rules calculations. The chemical potential dependence of the masses provide a novel prediction of the present computation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا