ترغب بنشر مسار تعليمي؟ اضغط هنا

135 - Peixuan Li , Danfeng Zhang 2021
Noninterference offers a rigorous end-to-end guarantee for secure propagation of information. However, real-world systems almost always involve security requirements that change during program execution, making noninterference inapplicable. Prior wor ks alleviate the limitation to some extent, but even for a veteran in information flow security, understanding the subtleties in the syntax and semantics of each policy is challenging, largely due to very different policy specification languages, and more fundamentally, semantic requirements of each policy. We take a top-down approach and present a novel information flow policy, called Dynamic Release, which allows information flow restrictions to downgrade and upgrade in arbitrary ways. Dynamic Release is formalized on a novel framework that, for the first time, allows us to compare and contrast various dynamic policies in the literature. We show that Dynamic Release generalizes declassification, erasure, delegation and revocation. Moreover, it is the only dynamic policy that is both applicable and correct on a benchmark of tests with dynamic policy.
Finding amorphous polymers with higher thermal conductivity is important, as they are ubiquitous in heat transfer applications. With recent progress in material informatics, machine learning approaches have been increasingly adopted for finding or de signing materials with desired properties. However, relatively limited effort has been put into finding thermally conductive polymers using machine learning, mainly due to the lack of polymer thermal conductivity databases with reasonable data volume. In this work, we combine high-throughput molecular dynamics (MD) simulations and machine learning to explore polymers with relatively high thermal conductivity (> 0.300 W/m-K). We first randomly select 365 polymers from the existing PolyInfo database and calculate their thermal conductivity using MD simulations. The data are then employed to train a machine learning regression model to quantify the structure-thermal conductivity relation, which is further leveraged to screen polymer candidates in the PolyInfo database with thermal conductivity > 0.300 W/m-K. 133 polymers with MD-calculated thermal conductivity above this threshold are eventually identified. Polymers with a wide range of thermal conductivity values are selected for re-calculation under different simulation conditions, and those polymers found with thermal conductivity above 0.300 W/m-K are mostly calculated to maintain values above this threshold despite fluctuation in the exact values. A classification model is also constructed, and similar results were obtained compared to the regression model in predicting polymers with thermal conductivity above or below 0.300 W/m-K. The strategy and results from this work may contribute to automating the design of polymers with high thermal conductivity.
Assist-as-needed (AAN) control aims at promoting therapeutic outcomes in robot-assisted rehabilitation by encouraging patients active participation. Impedance control is used by most AAN controllers to create a compliant force field around a target m otion to ensure tracking accuracy while allowing moderate kinematic errors. However, since the parameters governing the shape of the force field are often tuned manually or adapted online based on simplistic assumptions about subjects learning abilities, the effectiveness of conventional AAN controllers may be limited. In this work, we propose a novel adaptive AAN controller that is capable of autonomously reshaping the force field in a phase-dependent manner according to each individuals motor abilities and task requirements. The proposed controller consists of a modified Policy Improvement with Path Integral algorithm, a model-free, sampling-based reinforcement learning method that learns a subject-specific impedance landscape in real-time, and a hierarchical policy parameter evaluation structure that embeds the AAN paradigm by specifying performance-driven learning goals. The adaptability of the proposed control strategy to subjects motor responses and its ability to promote short-term motor adaptations are experimentally validated through treadmill training sessions with able-bodied subjects who learned altered gait patterns with the assistance of a powered ankle-foot orthosis.
149 - Yongfeng Zhang 2021
A machine intelligence pipeline usually consists of six components: problem, representation, model, loss, optimizer and metric. Researchers have worked hard trying to automate many components of the pipeline. However, one key component of the pipelin e--problem definition--is still left mostly unexplored in terms of automation. Usually, it requires extensive efforts from domain experts to identify, define and formulate important problems in an area. However, automatically discovering research or application problems for an area is beneficial since it helps to identify valid and potentially important problems hidden in data that are unknown to domain experts, expand the scope of tasks that we can do in an area, and even inspire completely new findings. This paper describes Problem Learning, which aims at learning to discover and define valid and ethical problems from data or from the machines interaction with the environment. We formalize problem learning as the identification of valid and ethical problems in a problem space and introduce several possible approaches to problem learning. In a broader sense, problem learning is an approach towards the free will of intelligent machines. Currently, machines are still limited to solving the problems defined by humans, without the ability or flexibility to freely explore various possible problems that are even unknown to humans. Though many machine learning techniques have been developed and integrated into intelligent systems, they still focus on the means rather than the purpose in that machines are still solving human defined problems. However, proposing good problems is sometimes even more important than solving problems, because a good problem can help to inspire new ideas and gain deeper understandings. The paper also discusses the ethical implications of problem learning under the background of Responsible AI.
129 - Yufeng Zhang , Qian Lv , Aoran Fan 2021
Monolayer WS2 has been a competitive candidate in electrical and optoelectronic devices due to its superior optoelectronic properties. To tackle the challenge of thermal management caused by the decreased size and concentrated heat in modern ICs, it is of great significance to accurately characterize the thermal conductivity of the monolayer WS2, especially with substrate supported. In this work, the dual-wavelength flash Raman method is used to experimentally measure the thermal conductivity of the suspended and the Si/SiO2 substrate supported monolayer WS2 at a temperature range of 200 K - 400 K. The room-temperature thermal conductivity of suspended and supported WS2 are 28.45 W/mK and 15.39 W/mK, respectively, with a ~50% reduction due to substrate effect. To systematically study the underlying mechanism behind the striking reduction, we employed the Raman spatial mapping analysis combined with the molecular dynamics simulation. The analysis of Raman spectra showed the increase of doping level, reduction of phonon lifetime and suppression of out-of-plane vibration mode due to substrate effect. In addition, the phonon transmission coefficient was mutually verified with Raman spectra analysis and further revealed that the substrate effect significantly enhances the phonon scattering at the interface and mainly suppresses the acoustic phonon, thus leading to the reduction of thermal conductivity. The thermal conductivity of other suspended and supported monolayer TMDCs (e.g. MoS2, MoSe2 and WSe2) were also listed for comparison. Our researches can be extended to understand the substrate effect of other 2D TMDCs and provide guidance for future TMDCs-based electrical and optoelectronic devices.
We compute the thermal conductivity of water within linear response theory from equilibrium molecular dynamics simulations, by adopting two different approaches. In one, the potential energy surface (PES) is derived on the fly from the electronic gro und state of density functional theory (DFT) and the corresponding analytical expression is used for the energy flux. In the other, the PES is represented by a deep neural network (DNN) trained on DFT data, whereby the PES has an explicit local decomposition and the energy flux takes a particularly simple expression. By virtue of a gauge invariance principle, established by Marcolongo, Umari, and Baroni, the two approaches should be equivalent if the PES were reproduced accurately by the DNN model. We test this hypothesis by calculating the thermal conductivity, at the GGA (PBE) level of theory, using the direct formulation and its DNN proxy, finding that both approaches yield the same conductivity, in excess of the experimental value by approximately 60%. Besides being numerically much more efficient than its direct DFT counterpart, the DNN scheme has the advantage of being easily applicable to more sophisticated DFT approximations, such as meta-GGA and hybrid functionals, for which it would be hard to derive analytically the expression of the energy flux. We find in this way, that a DNN model, trained on meta-GGA (SCAN) data, reduce the deviation from experiment of the predicted thermal conductivity by about 50%, leaving the question open as to whether the residual error is due to deficiencies of the functional, to a neglect of nuclear quantum effects in the atomic dynamics, or, likely, to a combination of the two.
In generative adversarial imitation learning (GAIL), the agent aims to learn a policy from an expert demonstration so that its performance cannot be discriminated from the expert policy on a certain predefined reward set. In this paper, we study GAIL in both online and offline settings with linear function approximation, where both the transition and reward function are linear in the feature maps. Besides the expert demonstration, in the online setting the agent can interact with the environment, while in the offline setting the agent only accesses an additional dataset collected by a prior. For online GAIL, we propose an optimistic generative adversarial policy optimization algorithm (OGAP) and prove that OGAP achieves $widetilde{mathcal{O}}(H^2 d^{3/2}K^{1/2}+KH^{3/2}dN_1^{-1/2})$ regret. Here $N_1$ represents the number of trajectories of the expert demonstration, $d$ is the feature dimension, and $K$ is the number of episodes. For offline GAIL, we propose a pessimistic generative adversarial policy optimization algorithm (PGAP). For an arbitrary additional dataset, we obtain the optimality gap of PGAP, achieving the minimax lower bound in the utilization of the additional dataset. Assuming sufficient coverage on the additional dataset, we show that PGAP achieves $widetilde{mathcal{O}}(H^{2}dK^{-1/2} +H^2d^{3/2}N_2^{-1/2}+H^{3/2}dN_1^{-1/2} )$ optimality gap. Here $N_2$ represents the number of trajectories of the additional dataset with sufficient coverage.
Owing to the excellent catalysis properties of Ag-Au binary nanoalloy, nanostructured Ag-Au, such as Ag-Au nanoparticles and nanopillars, have been under intense investigation. To achieve high accuracy in molecular simulations of the Ag-Au nanoalloys , the surface properties are required to be modeled with first-principles precision. In this work, we propose a generalizable machine-learning interatomic potential for the Ag-Au nanoalloys based on deep neural networks, trained from a database constructed with the first-principle calculations. This potential is highlighted by the accurate prediction of Au (111) surface reconstruction and the segregation of Au towards the Ag-Au nanoalloy surface, where the empirical force field failed in both cases. Moreover, regarding the adsorption and diffusion of adatoms on surfaces, the overall performance of our potential is better than the empirical force fields. We stress that the reported surface properties are blind to the potential modeling in the sense that none of the surface configurations is explicitly included in the training database, therefore, the reported potential is expected to have a strong ability of generalization to a wide range of properties and to play a key role in the investigation of nanostructured Ag-Au evolution, where the accurate descriptions of free surfaces are necessary.
We focus on tackling weakly supervised semantic segmentation with scribble-level annotation. The regularized loss has been proven to be an effective solution for this task. However, most existing regularized losses only leverage static shallow featur es (color, spatial information) to compute the regularized kernel, which limits its final performance since such static shallow features fail to describe pair-wise pixel relationship in complicated cases. In this paper, we propose a new regularized loss which utilizes both shallow and deep features that are dynamically updated in order to aggregate sufficient information to represent the relationship of different pixels. Moreover, in order to provide accurate deep features, we adopt vision transformer as the backbone and design a feature consistency head to train the pair-wise feature relationship. Unlike most approaches that adopt multi-stage training strategy with many bells and whistles, our approach can be directly trained in an end-to-end manner, in which the feature consistency head and our regularized loss can benefit from each other. Extensive experiments show that our approach achieves new state-of-the-art performances, outperforming other approaches by a significant margin with more than 6% mIoU increase.
Recent experiments showed the distinct observations on the transition metal ditelluride NiTe$_2$ under pressure: one reported a superconducting phase transition at 12 GPa, whereas another observed a sign reversal of Hall resistivity at 16 GPa without the appearance of superconductivity. To clarify the controversial experimental phenomena, we have carried out first-principles electronic structure calculations on the compressed NiTe$_2$ with structure searching and optimization. Our calculations show that the pressure can transform NiTe$_2$ from a layered P-3m1 phase to a cubic Pa-3 phase at $sim$10 GPa. Meanwhile, both the P-3m1 and Pa-3 phases possess nontrivial topological properties. The calculated superconducting $T_c$s for these two phases based on the electron-phonon coupling theory both approach 0 K. Further magnetic transport calculations reveal that the sign of Hall resistance for the Pa-3 phase is sensitive to the pressure and the charge doping, in contrast to the case of the P-3m1 phase. Our theoretical predictions on the compressed NiTe$_2$ wait for careful experimental examinations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا