ترغب بنشر مسار تعليمي؟ اضغط هنا

In rotating stars and planets, excitation of inertial waves in convective envelopes provides an important channel for tidal dissipation, but the dissipation rate due to inertial waves depends erratically on the tidal frequency. Tidal dissipation is s ignificantly enhanced at some frequencies, suggesting possible resonances between the tidal forcing and some eigenmodes. However, the nature of these resonances remains enigmatic owing to the singularity of the eigenvalue problem of inertial waves, and the resonances are often mistakenly attributed to wave attractors in the literature. In this letter, we reveal that resonant tidal responses correspond to inertial modes with large-scale flows hidden beneath localized wave beams. Strong couplings between the tidal forcing and the hidden large-scale flows intensify the localized wave beams emanating from the critical latitudes, leading to enhanced tidal dissipation. This study resolves a long-standing puzzle regarding the frequency-dependence of tidal dissipation due to inertial waves in convective envelopes.
Driven by recent advances in object detection with deep neural networks, the tracking-by-detection paradigm has gained increasing prevalence in the research community of multi-object tracking (MOT). It has long been known that appearance information plays an essential role in the detection-to-track association, which lies at the core of the tracking-by-detection paradigm. While most existing works consider the appearance distances between the detections and the tracks, they ignore the statistical information implied by the historical appearance distance records in the tracks, which can be particularly useful when a detection has similar distances with two or more tracks. In this work, we propose a hybrid track association (HTA) algorithm that models the historical appearance distances of a track with an incremental Gaussian mixture model (IGMM) and incorporates the derived statistical information into the calculation of the detection-to-track association cost. Experimental results on three MOT benchmarks confirm that HTA effectively improves the target identification performance with a small compromise to the tracking speed. Additionally, compared to many state-of-the-art trackers, the DeepSORT tracker equipped with HTA achieves better or comparable performance in terms of the balance of tracking quality and speed.
It is well accepted that an outward Marangoni convection from a low surface tension region will make the surface depressed. Here, we report that this established perception is only valid for thin liquid films. Using surface laser heating, we show tha t in deep liquids a laser beam actually pulls up the fluid above the free surface generating fountains with different shapes. Whereas with decreasing liquid depth a transition from fountain to indentation with fountain in-indentation is observed. Further, high-speed imaging reveals a transient surface process before steady elevation is formed, and this dynamic deformation is subsequently utilized to resonantly excite giant surface waves by a modulated laser beam. Computational fluid dynamics models reveal the underlying flow patterns and quantify the depth-dependent and time-resolved surface deformations. Our discoveries and techniques have upended the century-old perception and opened up a new regime of interdisciplinary research and applications of Marangoni-induced interface phenomena and optocapillary fluidic surfaces-the control of fluids with light.
The Period--Luminosity relation (PLR) of Mira variable stars is an important tool to determine astronomical distances. The common approach of estimating the PLR is a two-step procedure that first estimates the Mira periods and then runs a linear regr ession of magnitude on log period. When the light curves are sparse and noisy, the accuracy of period estimation decreases and can suffer from aliasing effects. Some methods improve accuracy by incorporating complex model structures at the expense of significant computational costs. Another drawback of existing methods is that they only provide point estimation without proper estimation of uncertainty. To overcome these challenges, we develop a hierarchical Bayesian model that simultaneously models the quasi-periodic variations for a collection of Mira light curves while estimating their common PLR. By borrowing strengths through the PLR, our method automatically reduces the aliasing effect, improves the accuracy of period estimation, and is capable of characterizing the estimation uncertainty. We develop a scalable stochastic variational inference algorithm for computation that can effectively deal with the multimodal posterior of period. The effectiveness of the proposed method is demonstrated through simulations, and an application to observations of Miras in the Local Group galaxy M33. Without using ad-hoc period correction tricks, our method achieves a distance estimate of M33 that is consistent with published work. Our method also shows superior robustness to downsampling of the light curves.
We show that the central limit theorem for linear statistics over determinantal point processes with $J$-Hermitian kernels holds under fairly general conditions. In particular, We establish Gaussian limit for linear statistics over determinantal poin t processes on union of two copies of $mathbb{R}^d$ when the correlation kernels are $J$-Hermitian translation-invariant.
Google Earth Engine (GEE) provides a convenient platform for applications based on optical satellite imagery of large areas. With such data sets, the detection of cloud is often a necessary prerequisite step. Recently, deep learning-based cloud detec tion methods have shown their potential for cloud detection but they can only be applied locally, leading to inefficient data downloading time and storage problems. This letter proposes a method to directly perform cloud detection in Landsat-8 imagery in GEE based on deep learning (DeepGEE-CD). A deep neural network (DNN) was first trained locally, and then the trained DNN was deployed in the JavaScript client of GEE. An experiment was undertaken to validate the proposed method with a set of Landsat-8 images and the results show that DeepGEE-CD outperformed the widely used function of mask (Fmask) algorithm. The proposed DeepGEE-CD approach can accurately detect cloud in Landsat-8 imagery without downloading it, making it a promising method for routine cloud detection of Landsat-8 imagery in GEE.
The validity of conclusions from meta-analysis is potentially threatened by publication bias. Most existing procedures for correcting publication bias assume normality of the study-specific effects that account for between-study heterogeneity. Howeve r, this assumption may not be valid, and the performance of these bias correction procedures can be highly sensitive to departures from normality. Further, there exist few measures to quantify the magnitude of publication bias based on selection models. In this paper, we address both of these issues. First, we explore the use of heavy-tailed distributions for the study-specific effects within a Bayesian hierarchical framework. The deviance information criterion (DIC) is used to determine the appropriate distribution to use for conducting the final analysis. Second, we develop a new measure to quantify the magnitude of publication bias based on Hellinger distance. Our measure is easy to interpret and takes advantage of the estimation uncertainty afforded naturally by the posterior distribution. We illustrate our proposed approach through simulation studies and meta-analyses on lung cancer and antidepressants. To assess the prevalence of publication bias, we apply our method to 1500 meta-analyses of dichotomous outcomes in the Cochrane Database of Systematic Reviews. Our methods are implemented in the publicly available R package RobustBayesianCopas.
136 - Jianfeng Lin 2020
Kronheimer-Mrowka recently proved that the Dehn twist along a 3-sphere in the neck of $K3#K3$ is not smoothly isotopic to the identity. This provides a new example of self-diffeomorphisms on 4-manifolds that are isotopic to the identity in the topolo gical category but not smoothly so. (The first such examples were given by Ruberman.) In this paper, we use the Pin(2)-equivariant Bauer-Furuta invariant to show that this Dehn twist is not smoothly isotopic to the identity even after a single stabilization (connected summing with the identity map on $S^{2}times S^{2}$). This gives the first example of exotic phenomena on simply connected smooth 4-manifolds that do not disappear after a single stabilization.
This work presents Origami, which provides privacy-preserving inference for large deep neural network (DNN) models through a combination of enclave execution, cryptographic blinding, interspersed with accelerator-based computation. Origami partitions the ML model into multiple partitions. The first partition receives the encrypted user input within an SGX enclave. The enclave decrypts the input and then applies cryptographic blinding to the input data and the model parameters. Cryptographic blinding is a technique that adds noise to obfuscate data. Origami sends the obfuscated data for computation to an untrusted GPU/CPU. The blinding and de-blinding factors are kept private by the SGX enclave, thereby preventing any adversary from denoising the data, when the computation is offloaded to a GPU/CPU. The computed output is returned to the enclave, which decodes the computation on noisy data using the unblinding factors privately stored within SGX. This process may be repeated for each DNN layer, as has been done in prior work Slalom. However, the overhead of blinding and unblinding the data is a limiting factor to scalability. Origami relies on the empirical observation that the feature maps after the first several layers can not be used, even by a powerful conditional GAN adversary to reconstruct input. Hence, Origami dynamically switches to executing the rest of the DNN layers directly on an accelerator without needing any further cryptographic blinding intervention to preserve privacy. We empirically demonstrate that using Origami, a conditional GAN adversary, even with an unlimited inference budget, cannot reconstruct the input. We implement and demonstrate the performance gains of Origami using the VGG-16 and VGG-19 models. Compared to running the entire VGG-19 model within SGX, Origami inference improves the performance of private inference from 11x while using Slalom to 15.1x.
Two-dimensional carbides and nitrides of transition metals, known as MXenes, are a fast-growing family of 2D materials that draw attention as energy storage materials. So far, MXenes are mainly prepared from Al-containing MAX phases (where A = Al) by Al dissolution in F-containing solution, but most other MAX phases have not been explored. Here, a redox-controlled A-site-etching of MAX phases in Lewis acidic melts is proposed and validated by the synthesis of various MXenes from unconventional MAX phase precursors with A elements Si, Zn, and Ga. A negative electrode of Ti3C2 MXene material obtained through this molten salt synthesis method delivers a Li+ storage capacity up to 738 C g-1 (205 mAh g-1) with high-rate performance and pseudocapacitive-like electrochemical signature in 1M LiPF6 carbonate-based electrolyte. MXene prepared from this molten salt synthesis route offer opportunities as high-rate negative electrode material for electrochemical energy storage applications.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا