ترغب بنشر مسار تعليمي؟ اضغط هنا

The structural flexibility of low dimensional nanomaterials offers unique opportunities for studying the impact of strain on their physical properties and for developing innovative devices utilizing strain engineering. A key towards such goals is a d evice platform which allows the independent tuning and reliable calibration of the strain. Here we report the fabrication and characterization of graphene nanoelectromechanical resonators(GNEMRs) on flexible substrates. Combining substrate bending and electrostatic gating, we achieve the independent tuning of the strain and sagging in graphene and explore the nonlinear dynamics over a wide parameter space. Analytical and numerical studies of a continuum mechanics model, including the competing higher order nonlinear terms, reveal a comprehensive nonlinear dynamics phase diagram, which quantitatively explains the complex behaviors of GNEMRs.
The characteristics of topological insulators are manifested in both their surface and bulk properties, but the latter remain to be explored. Here we report bulk signatures of pressure-induced band inversion and topological phase transitions in Pb$_{ 1-x}$Sn$_x$Se ($x=$0.00, 0.15, and 0.23). The results of infrared measurements as a function of pressure indicate the closing and the reopening of the band gap as well as a maximum in the free carrier spectral weight. The enhanced density of states near the band gap in the topological phase give rise to a steep interband absorption edge. The change of density of states also yields a maximum in the pressure dependence of the Fermi level. Thus our conclusive results provide a consistent picture of pressure-induced topological phase transitions and highlight the bulk origin of the novel properties in topological insulators.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا