ﻻ يوجد ملخص باللغة العربية
The structural flexibility of low dimensional nanomaterials offers unique opportunities for studying the impact of strain on their physical properties and for developing innovative devices utilizing strain engineering. A key towards such goals is a device platform which allows the independent tuning and reliable calibration of the strain. Here we report the fabrication and characterization of graphene nanoelectromechanical resonators(GNEMRs) on flexible substrates. Combining substrate bending and electrostatic gating, we achieve the independent tuning of the strain and sagging in graphene and explore the nonlinear dynamics over a wide parameter space. Analytical and numerical studies of a continuum mechanics model, including the competing higher order nonlinear terms, reveal a comprehensive nonlinear dynamics phase diagram, which quantitatively explains the complex behaviors of GNEMRs.
We propose and analyze the detector of modulated terahertz (THz) radiation based on the graphene field-effect transistor with mechanically floating gate made of graphene as well. The THz component of incoming radiation induces resonant excitation of
Using a simple setup to bend a flexible substrate, we demonstrate deterministic and reproducible in-situ strain tuning of graphene electronic devices. Central to this method is the full hBN encapsulation of graphene, which preserves the exceptional q
We study frequency dependent noise of a suspended carbon nanotube quantum dot nanoelectromechanical resonator induced by electron-vibration coupling. By using rigorous Keldysh diagrammatic technique, we build a formal framework to connect the vibrati
We report on experimental demonstration of a new type of nanoelectromechanical resonators based on black phosphorus crystals. Facilitated by a highly efficient dry transfer technique, crystalline black phosphorus flakes are harnessed to enable drumhe
We aim to understand how the van der Waals force between neutral adatoms and a graphene layer is modified by uniaxial strain and electron correlation effects. A detailed analysis is presented for three atoms (He, H, and Na) and graphene strain rangin