ترغب بنشر مسار تعليمي؟ اضغط هنا

We define a notion of uniform density on translation bounded measures in unimodular amenable locally compact Hausdorff groups, which is based on a group invariant introduced by Leptin in 1966. We show that this density notion coincides with the well- known Banach density. We use Leptin densities for a new geometric proof of the model set density formula, which expresses the density of a uniform regular model set in terms of the volume of its window, and for a proof of uniform mean almost periodicity of such model sets.
We define spherical diffraction measures for a wide class of weighted point sets in commutative spaces, i.e. proper homogeneous spaces associated with Gelfand pairs. In the case of the hyperbolic plane we can interpret the spherical diffraction measu re as the Mellin transform of the auto-correlation distribution. We show that uniform regular model sets in commutative spaces have a pure point spherical diffraction measure. The atoms of this measure are located at the spherical automorphic spectrum of the underlying lattice, and the diffraction coefficients can be characterized abstractly in terms of the so-called shadow transform of the characteristic functions of the window. In the case of the Heisenberg group we can give explicit formulas for these diffraction coefficients in terms of Bessel and Laguerre functions.
We study the auto-correlation measures of invariant random point processes in the hyperbolic plane which arise from various classes of aperiodic Delone sets. More generally, we study auto-correlation measures for large classes of Delone sets in (and even translation bounded measures on) arbitrary locally compact homogeneous metric spaces. We then specialize to the case of weighted model sets, in which we are able to derive more concrete formulas for the auto-correlation. In the case of Riemannian symmetric spaces we also explain how the auto-correlation of a weighted model set in a Riemannian symmetric space can be identified with a (typically non-tempered) positive-definite distribution on $mathbb R^n$. This paves the way for a diffraction theory for such model sets, which will be discussed in the sequel to the present article.
We study uniform and non-uniform model sets in arbitrary locally compact second countable (lcsc) groups, which provide a natural generalization of uniform model sets in locally compact abelian groups as defined by Meyer and used as mathematical model s of quasi-crystals. We then define a notion of auto-correlation for subsets of finite local complexitiy in arbitrary lcsc groups, which generalizes Hofs classical definition beyond the class of amenable groups, and provide a formula for the auto-correlation of a regular model set. Along the way we show that the punctured hull of an arbitrary regular model set admits a unique invariant probability measure, even in the case where the punctured hull is non-compact and the group is non-amenable. In fact this measure is also the unique stationary measure with respect to any admissible probability measure.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا