ترغب بنشر مسار تعليمي؟ اضغط هنا

Data scarcity is a tremendous challenge in causal effect estimation. In this paper, we propose to exploit additional data sources to facilitate estimating causal effects in the target population. Specifically, we leverage additional source datasets w hich share similar causal mechanisms with the target observations to help infer causal effects of the target population. We propose three levels of knowledge transfer, through modelling the outcomes, treatments, and confounders. To achieve consistent positive transfer, we introduce learnable parametric transfer factors to adaptively control the transfer strength, and thus achieving a fair and balanced knowledge transfer between the sources and the target. The proposed method can infer causal effects in the target population without prior knowledge of data discrepancy between the additional data sources and the target. Experiments on both synthetic and real-world datasets show the effectiveness of the proposed method as compared with recent baselines.
In this paper, we present our solution for the {it IJCAI--PRICAI--20 3D AI Challenge: 3D Object Reconstruction from A Single Image}. We develop a variant of AtlasNet that consumes single 2D images and generates 3D point clouds through 2D to 3D mappin g. To push the performance to the limit and present guidance on crucial implementation choices, we conduct extensive experiments to analyze the influence of decoder design and different settings on the normalization, projection, and sampling methods. Our method achieves 2nd place in the final track with a score of $70.88$, a chamfer distance of $36.87$, and a mean f-score of $59.18$. The source code of our method will be available at https://github.com/em-data/Enhanced_AtlasNet_3DReconstruction.
Intent detection and slot filling are two fundamental tasks for building a spoken language understanding (SLU) system. Multiple deep learning-based joint models have demonstrated excellent results on the two tasks. In this paper, we propose a new joi nt model with a wheel-graph attention network (Wheel-GAT) which is able to model interrelated connections directly for intent detection and slot filling. To construct a graph structure for utterances, we create intent nodes, slot nodes, and directed edges. Intent nodes can provide utterance-level semantic information for slot filling, while slot nodes can also provide local keyword information for intent. Experiments show that our model outperforms multiple baselines on two public datasets. Besides, we also demonstrate that using Bidirectional Encoder Representation from Transformer (BERT) model further boosts the performance in the SLU task.
69 - Fei Wei 2021
We obtain an estimate for the average value of the product of the Mobius function and any polynomial phase over short intervals and arithmetic progressions simultaneously. As a consequence, we prove that the product of M{o}bius and any polynomial pha se is disjoint from arithmetic functions realized in certain rigid dynamical systems, such as any finite products of translations of Mobius squared.
Domain adaptation is an important but challenging task. Most of the existing domain adaptation methods struggle to extract the domain-invariant representation on the feature space with entangling domain information and semantic information. Different from previous efforts on the entangled feature space, we aim to extract the domain invariant semantic information in the latent disentangled semantic representation (DSR) of the data. In DSR, we assume the data generation process is controlled by two independent sets of variables, i.e., the semantic latent variables and the domain latent variables. Under the above assumption, we employ a variational auto-encoder to reconstruct the semantic latent variables and domain latent variables behind the data. We further devise a dual adversarial network to disentangle these two sets of reconstructed latent variables. The disentangled semantic latent variables are finally adapted across the domains. Experimental studies testify that our model yields state-of-the-art performance on several domain adaptation benchmark datasets.
Feature-based transfer is one of the most effective methodologies for transfer learning. Existing studies usually assume that the learned new feature representation is truly emph{domain-invariant}, and thus directly train a transfer model $mathcal{M} $ on source domain. In this paper, we consider a more realistic scenario where the new feature representation is suboptimal and small divergence still exists across domains. We propose a new learning strategy with a transfer model called Randomized Transferable Machine (RTM). More specifically, we work on source data with the new feature representation learned from existing feature-based transfer methods. The key idea is to enlarge source training data populations by randomly corrupting source data using some noises, and then train a transfer model $widetilde{mathcal{M}}$ that performs well on all the corrupted source data populations. In principle, the more corruptions are made, the higher the probability of the target data can be covered by the constructed source populations, and thus better transfer performance can be achieved by $widetilde{mathcal{M}}$. An ideal case is with infinite corruptions, which however is infeasible in reality. We develop a marginalized solution with linear regression model and dropout noise. With a marginalization trick, we can train an RTM that is equivalently to training using infinite source noisy populations without truly conducting any corruption. More importantly, such an RTM has a closed-form solution, which enables very fast and efficient training. Extensive experiments on various real-world transfer tasks show that RTM is a promising transfer model.
59 - Weichen Gu , Fei Wei 2020
A vast class of exponential functions is showed to be deterministic. This class includes functions whose exponents are polynomial-like or piece-wise close to polynomials after differentiation. Many of these functions are indeed disjoint from the Mobi us function. As a consequence, we show that Sarnaks Disjointness Conjecture for the Mobius function (from deterministic sequences) is equivalent to the disjointness in average over short intervals
Numerous deep reinforcement learning agents have been proposed, and each of them has its strengths and flaws. In this work, we present a Cooperative Heterogeneous Deep Reinforcement Learning (CHDRL) framework that can learn a policy by integrating th e advantages of heterogeneous agents. Specifically, we propose a cooperative learning framework that classifies heterogeneous agents into two classes: global agents and local agents. Global agents are off-policy agents that can utilize experiences from the other agents. Local agents are either on-policy agents or population-based evolutionary algorithms (EAs) agents that can explore the local area effectively. We employ global agents, which are sample-efficient, to guide the learning of local agents so that local agents can benefit from sample-efficient agents and simultaneously maintain their advantages, e.g., stability. Global agents also benefit from effective local searches. Experimental studies on a range of continuous control tasks from the Mujoco benchmark show that CHDRL achieves better performance compared with state-of-the-art baselines.
Imbalanced learning (IL), i.e., learning unbiased models from class-imbalanced data, is a challenging problem. Typical IL methods including resampling and reweighting were designed based on some heuristic assumptions. They often suffer from unstable performance, poor applicability, and high computational cost in complex tasks where their assumptions do not hold. In this paper, we introduce a novel ensemble IL framework named MESA. It adaptively resamples the training set in iterations to get multiple classifiers and forms a cascade ensemble model. MESA directly learns the sampling strategy from data to optimize the final metric beyond following random heuristics. Moreover, unlike prevailing meta-learning-based IL solutions, we decouple the model-training and meta-training in MESA by independently train the meta-sampler over task-agnostic meta-data. This makes MESA generally applicable to most of the existing learning models and the meta-sampler can be efficiently applied to new tasks. Extensive experiments on both synthetic and real-world tasks demonstrate the effectiveness, robustness, and transferability of MESA. Our code is available at https://github.com/ZhiningLiu1998/mesa.
This work is inspired by recent advances in hierarchical reinforcement learning (HRL) (Barto and Mahadevan 2003; Hengst 2010), and improvements in learning efficiency from heuristic-based subgoal selection, experience replay (Lin 1993; Andrychowicz e t al. 2017), and task-based curriculum learning (Bengio et al. 2009; Zaremba and Sutskever 2014). We propose a new method to integrate HRL, experience replay and effective subgoal selection through an implicit curriculum design based on human expertise to support sample-efficient learning and enhance interpretability of the agents behavior. Human expertise remains indispensable in many areas such as medicine (Buch, Ahmed, and Maruthappu 2018) and law (Cath 2018), where interpretability, explainability and transparency are crucial in the decision making process, for ethical and legal reasons. Our method simplifies the complex task sets for achieving the overall objectives by decomposing them into subgoals at different levels of abstraction. Incorporating relevant subjective knowledge also significantly reduces the computational resources spent in exploration for RL, especially in high speed, changing, and complex environments where the transition dynamics cannot be effectively learned and modelled in a short time. Experimental results in two StarCraft II (SC2) (Vinyals et al. 2017) minigames demonstrate that our method can achieve better sample efficiency than flat and end-to-end RL methods, and provides an effective method for explaining the agents performance.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا