ﻻ يوجد ملخص باللغة العربية
We obtain an estimate for the average value of the product of the Mobius function and any polynomial phase over short intervals and arithmetic progressions simultaneously. As a consequence, we prove that the product of M{o}bius and any polynomial phase is disjoint from arithmetic functions realized in certain rigid dynamical systems, such as any finite products of translations of Mobius squared.
We establish cancellation in short sums of certain special trace functions over $mathbb{F}_q[u]$ below the P{o}lya-Vinogradov range, with savings approaching square-root cancellation as $q$ grows. This is used to resolve the $mathbb{F}_q[u]$-analog o
A vast class of exponential functions is showed to be deterministic. This class includes functions whose exponents are polynomial-like or piece-wise close to polynomials after differentiation. Many of these functions are indeed disjoint from the Mobi
We study a Dirichlet series in two variables which counts primitive three-term arithmetic progressions of squares. We show that this multiple Dirichlet series has meromorphic continuation to $mathbb{C}^2$ and use Tauberian methods to obtain counts fo
Given an abelian group $G$, it is natural to ask whether there exists a permutation $pi$ of $G$ that destroys all nontrivial 3-term arithmetic progressions (APs), in the sense that $pi(b) - pi(a) eq pi(c) - pi(b)$ for every ordered triple $(a,b,c) i
We prove a result on the distribution of the general divisor functions in arithmetic progressions to smooth moduli which exceed the square root of the length.