ترغب بنشر مسار تعليمي؟ اضغط هنا

161 - Fan Zhang , Bo Pan , Pengfei Shao 2021
Early and accurate diagnosis of Alzheimers disease (AD) and its prodromal period mild cognitive impairment (MCI) is essential for the delayed disease progression and the improved quality of patientslife. The emerging computer-aided diagnostic methods that combine deep learning with structural magnetic resonance imaging (sMRI) have achieved encouraging results, but some of them are limit of issues such as data leakage and unexplainable diagnosis. In this research, we propose a novel end-to-end deep learning approach for automated diagnosis of AD and localization of important brain regions related to the disease from sMRI data. This approach is based on a 2D single model strategy and has the following differences from the current approaches: 1) Convolutional Neural Network (CNN) models of different structures and capacities are evaluated systemically and the most suitable model is adopted for AD diagnosis; 2) a data augmentation strategy named Two-stage Random RandAugment (TRRA) is proposed to alleviate the overfitting issue caused by limited training data and to improve the classification performance in AD diagnosis; 3) an explainable method of Grad-CAM++ is introduced to generate the visually explainable heatmaps that localize and highlight the brain regions that our model focuses on and to make our model more transparent. Our approach has been evaluated on two publicly accessible datasets for two classification tasks of AD vs. cognitively normal (CN) and progressive MCI (pMCI) vs. stable MCI (sMCI). The experimental results indicate that our approach outperforms the state-of-the-art approaches, including those using multi-model and 3D CNN methods. The resultant localization heatmaps from our approach also highlight the lateral ventricle and some disease-relevant regions of cortex, coincident with the commonly affected regions during the development of AD.
Weakly-Supervised Object Detection (WSOD) and Localization (WSOL), i.e., detecting multiple and single instances with bounding boxes in an image using image-level labels, are long-standing and challenging tasks in the CV community. With the success o f deep neural networks in object detection, both WSOD and WSOL have received unprecedented attention. Hundreds of WSOD and WSOL methods and numerous techniques have been proposed in the deep learning era. To this end, in this paper, we consider WSOL is a sub-task of WSOD and provide a comprehensive survey of the recent achievements of WSOD. Specifically, we firstly describe the formulation and setting of the WSOD, including the background, challenges, basic framework. Meanwhile, we summarize and analyze all advanced techniques and training tricks for improving detection performance. Then, we introduce the widely-used datasets and evaluation metrics of WSOD. Lastly, we discuss the future directions of WSOD. We believe that these summaries can help pave a way for future research on WSOD and WSOL.
The recent emerged weakly supervised object localization (WSOL) methods can learn to localize an object in the image only using image-level labels. Previous works endeavor to perceive the interval objects from the small and sparse discriminative atte ntion map, yet ignoring the co-occurrence confounder (e.g., bird and sky), which makes the model inspection (e.g., CAM) hard to distinguish between the object and context. In this paper, we make an early attempt to tackle this challenge via causal intervention (CI). Our proposed method, dubbed CI-CAM, explores the causalities among images, contexts, and categories to eliminate the biased co-occurrence in the class activation maps thus improving the accuracy of object localization. Extensive experiments on several benchmarks demonstrate the effectiveness of CI-CAM in learning the clear object boundaries from confounding contexts. Particularly, in CUB-200-2011 which severely suffers from the co-occurrence confounder, CI-CAM significantly outperforms the traditional CAM-based baseline (58.39% vs 52.4% in top-1 localization accuracy). While in more general scenarios such as ImageNet, CI-CAM can also perform on par with the state of the arts.
136 - Peng Gao , Fei Shao , Xiaoyuan Liu 2021
Log-based cyber threat hunting has emerged as an important solution to counter sophisticated cyber attacks. However, existing approaches require non-trivial efforts of manual query construction and have overlooked the rich external knowledge about th reat behaviors provided by open-source Cyber Threat Intelligence (OSCTI). To bridge the gap, we build ThreatRaptor, a system that facilitates cyber threat hunting in computer systems using OSCTI. Built upon mature system auditing frameworks, ThreatRaptor provides (1) an unsupervised, light-weight, and accurate NLP pipeline that extracts structured threat behaviors from unstructured OSCTI text, (2) a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities, (3) a query synthesis mechanism that automatically synthesizes a TBQL query from the extracted threat behaviors, and (4) an efficient query execution engine to search the big system audit logging data.
352 - Peng Gao , Fei Shao , Xiaoyuan Liu 2020
Log-based cyber threat hunting has emerged as an important solution to counter sophisticated attacks. However, existing approaches require non-trivial efforts of manual query construction and have overlooked the rich external threat knowledge provide d by open-source Cyber Threat Intelligence (OSCTI). To bridge the gap, we propose ThreatRaptor, a system that facilitates threat hunting in computer systems using OSCTI. Built upon system auditing frameworks, ThreatRaptor provides (1) an unsupervised, light-weight, and accurate NLP pipeline that extracts structured threat behaviors from unstructured OSCTI text, (2) a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities, (3) a query synthesis mechanism that automatically synthesizes a TBQL query for hunting, and (4) an efficient query execution engine to search the big audit logging data. Evaluations on a broad set of attack cases demonstrate the accuracy and efficiency of ThreatRaptor in practical threat hunting.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا