ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we consider the dynamic power control for delay-aware D2D communications. The stochastic optimization problem is formulated as an infinite horizon average cost Markov decision process. To deal with the curse of dimensionality, we utili ze the interference filtering property of the CSMA-like MAC protocol and derive a closed-form approximate priority function and the associated error bound using perturbation analysis. Based on the closed-form approximate priority function, we propose a low-complexity power control algorithm solving the per-stage optimization problem. The proposed solution is further shown to be asymptotically optimal for a sufficiently large carrier sensing distance. Finally, the proposed power control scheme is compared with various baselines through simulations, and it is shown that significant performance gain can be achieved.
74 - Yin Shi , Meng Wu , Fan Zhang 2014
The characterization and applications of topological insulators depend critically on their protected surface states, which, however, can be obscured by the presence of trivial dangling bond states. Our first principle calculations show that this is t he case for the pristine $(111)$ surface of SnTe. Yet, the predicted surface states unfold when the dangling bond states are passivated in proper chemisorption. We further extract the anisotropic Fermi velocities, penetration lengths and anisotropic spin textures of the unfolded $barGamma$- and $bar M$-surface states, which are consistent with the theory in http://dx.doi.org/10.1103/PhysRevB.86.081303 Phys. Rev. B 86, 081303 (R). More importantly, this chemisorption scheme provides an external control of the relative energies of different Dirac nodes, which is particularly desirable in multi-valley transport.
Bilayer graphene in a perpendicular electric field can host domain walls between regions of reversed field direction or interlayer stacking. The gapless modes propagating along these domain walls, while not strictly topological, nevertheless have int eresting physical properties, including valley-momentum locking. A junction where two domain walls intersect forms the analogue of a quantum point contact. We study theoretically the critical behavior of this junction near the pinch-off transition, which is controlled by two separate classes of non-trivial quantum critical points. For strong interactions, the junction can host phases of unique charge and valley conductances. For weaker interactions, the low-temperature charge conductance can undergo one of two possible quantum phase transitions, each characterized by a specific critical exponent and a collapse to a universal scaling function, which we compute.
Because of its large density-of-states and the 2{pi} Berry phase near its low-energy band-contact points, neutral bilayer graphene (BLG) at zero magnetic field (B) is susceptible to chiral-symmetry breaking, leading to a variety of gapped spontaneous quantum Hall states distinguished by valley and spin-dependent quantized Hall conductivities. Among these, the layer antiferromagnetic state, which has quantum valley Hall (QVH) effects of opposite sign for opposite spins, appears to be the thermodynamic ground state. Though other gapped states have not been observed experimentally at B=0, they can be explored by exploiting their adiabatic connection to quantum Hall states with the same total Hall conductivity {sigma}H. In this paper, by using a magnetic field to select filling factor { u}=2 states with {sigma}H=2e^2/h, we demonstrate the presence of a quantum anomalous Hall (QAH) state for the majority spin, and a Kekule state with spontaneous valley coherence and a quantum valley Hall state for the minority spin in BLG. By providing the first spectroscopic mapping of spontaneous Hall states at { u}=2, our results shed further light on the rich set of competing ordered states in BLG.
We study theoretically the electrical current and low-frequency noise for a linear Josephson junction structure on a topological insulator, in which the superconductor forms a closed ring and currents are injected from normal regions inside and outsi de the ring. We find that this geometry offers a signature for the presence of gapless 1D Majorana fermion modes that are predicted in the channel when the phase difference phi, controlled by the magnetic flux through the ring, is pi. We show that for low temperature the linear conductance jumps when phi passes through pi, accompanied by non-local correlations between the currents from the inside and outside of the ring. We compute the dependence of these features on temperature, voltage and linear dimensions, and discuss the implications for experiments.
Bilayer graphene (BLG) at the charge neutrality point (CNP) is strongly susceptible to electronic interactions, and expected to undergo a phase transition into a state with spontaneous broken symmetries. By systematically investigating a large number of singly- and doubly-gated bilayer graphene (BLG) devices, we show that an insulating state appears only in devices with high mobility and low extrinsic doping. This insulating state has an associated transition temperature Tc~5K and an energy gap of ~3 meV, thus strongly suggesting a gapped broken symmetry state that is destroyed by very weak disorder. The transition to the intrinsic broken symmetry state can be tuned by disorder, out-of-plane electric field, or carrier density.
When one splits spacetime into space plus time, the Weyl curvature tensor (vacuum Riemann tensor) gets split into two spatial, symmetric, and trace-free (STF) tensors: (i) the Weyl tensors so-called electric part or tidal field, and (ii) the Weyl ten sors so-called magnetic part or frame-drag field. Being STF, the tidal field and frame-drag field each have three orthogonal eigenvector fields which can be depicted by their integral curves. We call the integral curves of the tidal fields eigenvectors tendex lines, we call each tendex lines eigenvalue its tendicity, and we give the name tendex to a collection of tendex lines with large tendicity. The analogous quantities for the frame-drag field are vortex lines, their vorticities, and vortexes. We build up physical intuition into these concepts by applying them to a variety of weak-gravity phenomena: a spinning, gravitating point particle, two such particles side by side, a plane gravitational wave, a point particle with a dynamical current-quadrupole moment or dynamical mass-quadrupole moment, and a slow-motion binary system made of nonspinning point particles. [Abstract is abbreviated; full abstract also mentions additional results.]
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا