ترغب بنشر مسار تعليمي؟ اضغط هنا

Having been a ground for various topological fermionic phases, the family of ZrSiS-type 111 materials has been under experimental and theoretical investigations. Within this family of materials, the subfamily LnSbTe (Ln = lanthanide elements) is gain ing interests in recent times as the strong correlation effects and magnetism arising from the 4f electrons of the lanthanides can provide an important platform to study the linking between topology, magnetism, and correlation. In this paper, we report the systematic study of the electronic structure of SmSbTe - a member of the LnSbTe subfamily - by utilizing angle-resolved photoemission spectroscopy in conjunction with first-principles calculations, transport, and magnetic measurements. Our experimental results identify multiple Dirac nodes forming the nodal-lines along the G- X and Z- R directions in the bulk Brillouin zone (BZ) as predicted by our theoretical calculations. A surface Dirac-like state that arises from the square net plane of the Sb atoms is also observed at the X point of the surface BZ. Our study highlights SmSbTe as a promising candidate to understand the topological electronic structure of LnSbTe materials.
We investigate theoretically the superconducting state of the undoped Fe-based superconductor ThFeAsN. Using input from $ab~initio$ calculations, we solve the Fermi-surface based, multichannel Eliashberg equations for Cooper-pair formation mediated b y spin and charge fluctuations, and by the electron-phonon interaction (EPI). Our results reveal that spin fluctuations alone, when coupling only hole-like with electron-like energy bands, can account for a critical temperature $T_c$ up to $sim7.5,mathrm{K}$ with an $s_{pm}$-wave superconducting gap symmetry, which is a comparatively low $T_c$ with respect to the experimental value $T_c^{mathrm{exp}}=30,mathrm{K}$. Other combinations of interaction kernels (spin, charge, electron-phonon) lead to a suppression of $T_c$ due to phase frustration of the superconducting gap. We qualitatively argue that the missing ingredient to explain the gap magnitude and $T_c$ in this material is the first-order correction to the EPI vertex. In the noninteracting state this correction adopts a form supporting the $s_{pm}$ gap symmetry, in contrast to EPI within Migdals approximation, i.e., EPI without vertex correction, and therefore it enhances tendencies arising from spin fluctuations.
Initiated by the discovery of topological insulators, topologically non-trivial materials, more specifically topological semimetals and metals have emerged as new frontiers in the field of quantum materials. In this work, we perform a systematic meas urement of EuMg2Bi2, a compound with antiferromagnetic transition temperature at 6.7 K, observed via electrical resistivity, magnetization and specific heat capacity measurements. By utilizing angle-resolved photoemission spectroscopy in concurrence with first-principles calculations, we observe Dirac cones at the corner and the zone center of the Brillouin zone. From our experimental data, multiple Dirac states at G and K points are observed, where the Dirac nodes are located at different energy positions from the Fermi level. Our experimental investigations of detailed electronic structure as well as transport measurements of EuMg2Bi2 suggest that it could potentially provide a platform to study the interplay between topology and magnetism.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا