ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the electrical and magneto-transport properties of Pt-C granular metals prepared by focused-electron-beam induced deposition. In particular, we consider samples close to the metal-insulator-transition obtained from as-grown deposits by means of a low- energy electron irradiation treatment. The temperature dependence of the conductivity shows a lnT behavior with a transition to square root of T at low temperature, as expected for systems in the strong-coupling tunneling regime. The magnetoresistance is positive and is described within the wave-function shrinkage model, normally used for disordered system in the weak-coupling regime. In order to fit the experimental data spin-dependent tunneling has to be taken into account. In the discussion we attribute the origin of the spin-dependency to confinement effects of Pt nano-grains embedded in the carbon matrix.
We present temperature-dependent conductivity data obtained on a sample set of nanogranular Pt-C with finely tuned inter-grain tunnel coupling strength g. For samples in the strong-coupling regime g > g_C, characterized by a finite conductivity for T -> 0, we find a logarithmic behavior at elevated temperatures and a crossover to a sqrt(T)-behavior at low temperatures over a wide range of coupling strengths g_C = 0.25 < g <= 3. The experimental observation for g > 1 is in very good agreement with recent theoretical findings on ordered granular metals in three spatial dimensions. The results indicate a validity of the predicted universal conductivity behavior that goes beyond the immediate range of the approach used in the theoretical derivation.
We report DC Josephson effects observed in a microbridge prepared from an individual crystalline growth domain of $CeCoIn_5$ thin film. Josephson effects were observed by periodic voltage modulations under external magnetic field $Delta V(B)$ with th e expected periodicity and by the temperature dependence of the Josephson critical current $I_c(T)$. The shape of $Delta V(B)$ was found to be asymmetric, as it is expected for microbridges. The dependence $I_c(T)$ follows the Ambegaokar-Baratoff relation, which is unexpected for microbridges. Features in the dynamical resistance curves were attributed to the periodic motion of Abricosov vortices within the microbridge.
A superconducting quantum interference device (SQUID) was prepared on a micron-sized single crystal using a selected growth domain of a thin film of $CeCoIn_5$ grown by molecular beam epitaxy. SQUID voltage oscillations of good quality were obtained as well as interference effects stemming from the individual Josephson microbridges. The transport characteristics in the superconducting state exhibited several peculiarities which we ascribe to the periodic motion of vortices in the microbridges. The temperature dependence of the Josephson critical current shows good correspondence to the Ambegaokar-Baratoff relation, expected for the ideal Josephson junction. The results indicate a promising pathway to identify the type of order parameter in $CeCoIn_5$ by means of phase-sensitive measurements on microbridges.
Micro-Hall magnetometry is employed to study the magnetization dynamics of a single, micron-size CrO$_2$ grain. With this technique we track the motion of a single domain wall, which allows us to probe the distribution of imperfections throughout the material. An external magnetic field along the grains easy magnetization direction induces magnetization reversal, giving rise to a series of sharp jumps in magnetization. Supported by micromagnetic simulations, we identify the transition to a state with a single cross-tie domain wall, where pinning/depinning of the wall results in stochastic Barkhausen jumps.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا