ترغب بنشر مسار تعليمي؟ اضغط هنا

We numerically investigate the motion of active artificial microswimmers diffusing in a fuel concentration gradient. We observe that, in the steady state, their probability density accumulates in the low-concentration regions, whereas a tagged swimme r drifts with velocity depending in modulus and orientation on how the concentration gradient affects the self-propulsion mechanism. Under most experimentally accessible conditions, the particle drifts toward the high-concentration regions (pseudo-chemotactic drift). A correct interpretation of experimental data must account for such an anti-Fickian behavior.
We numerically simulate the transport of elliptic Janus particles along narrow two-dimensional channels with reflecting walls. The self-propulsion velocity of the particle is oriented along either their major (prolate) or minor axis (oblate). In smoo th channels, we observe long diffusion transients: ballistic for prolate particles and zero-diffusion for oblate particles. Placed in a rough channel, prolate particles tend to drift against an applied drive by tumbling over the wall protrusions; for appropriate aspect ratios, the modulus of their negative mobility grows exceedingly large (giant negative mobility). This suggests that a small external drive suffices to efficiently direct self-propulsion of rod-like Janus particles in rough channels.
Brownian transport of self-propelled overdamped microswimmers (like Janus particles) in a two-dimensional periodically compartmentalized channel is numerically investigated for different compartment geometries, boundary collisional dynamics, and part icle rotational diffusion. The resulting time-correlated active Brownian motion is subject to rectification in the presence of spatial asymmetry. We prove that ratcheting of Janus particles can be orders of magnitude stronger than for ordinary thermal potential ratchets and thus experimentally accessible. In particular, autonomous pumping of a large mixture of passive particles can be induced by just adding a small fraction of Janus particles.
A Brownian particle moving across a porous membrane subject to an oscillating force exhibits stochastic resonance with properties which strongly depend on the geometry of the confining cavities on the two sides of the membrane. Such a manifestation o f stochastic resonance requires neither energetic nor entropic barriers, and can thus be regarded as a purely geometric effect. The magnitude of this effect is sensitive to the geometry of both the cavities and the pores, thus leading to distinctive optimal synchronization conditions.
We consider a two-dimensional gas of colliding charged particles confined to finite size containers of various geometries and subjected to a uniform orthogonal magnetic field. The gas spectral densities are characterized by a broad peak at the cyclot ron frequency. Unlike for infinitely extended gases, where the amplitude of the cyclotron peak grows linearly with temperature, here confinement causes such a peak to go through a maximum for an optimal temperature. In view of the fluctuation-dissipation theorem, the reported resonance effect has a direct counterpart in the electric susceptibility of the confined magnetized gas.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا