ترغب بنشر مسار تعليمي؟ اضغط هنا

Our common understanding of the physical world deeply relies on the notion that events are ordered with respect to some time parameter, with past events serving as causes for future ones. Nonetheless, it was recently found that it is possible to form ulate quantum mechanics without any reference to a global time or causal structure. The resulting framework includes new kinds of quantum resources that allow performing tasks - in particular, the violation of causal inequalities - which are impossible for events ordered according to a global causal order. However, no physical implementation of such resources is known. Here we show that a recently demonstrated resource for quantum computation - the quantum switch - is a genuine example of indefinite causal order. We do this by introducing a new tool - the causal witness - which can detect the causal nonseparability of any quantum resource that is incompatible with a definite causal order. We show however that the quantum switch does not violate any causal nequality.
The physics of low-energy quantum systems is usually studied without explicit consideration of the background spacetime. Phenomena inherent to quantum theory on curved space-time, such as Hawking radiation, are typically assumed to be only relevant a t extreme physical conditions: at high energies and in strong gravitational fields. Here we consider low-energy quantum mechanics in the presence of gravitational time dilation and show that the latter leads to decoherence of quantum superpositions. Time dilation induces a universal coupling between internal degrees of freedom and the centre-of-mass of a composite particle. The resulting correlations cause decoherence of the particles position, even without any external environment. We also show that the weak time dilation on Earth is already sufficient to decohere micron scale objects. Gravity therefore can account for the emergence of classicality and the effect can in principle be tested in future matter wave experiments.
One of the essential building blocks of classical computer programs is the if clause, which executes a subroutine depending on the value of a control variable. Similarly, several quantum algorithms rely on applying a unitary operation conditioned on the state of a control system. Here we show that this control cannot be performed by a quantum circuit if the unitary is completely unknown. However, this no-go theorem does not prevent implementing quantum control of unknown unitaries in practice, as any physical implementation of an unknown unitary provides additional information that makes the control possible. We then argue that one should extend the quantum circuit formalism to capture this possibility in a straightforward way. This is done by allowing unknown unitaries to be applied to subspaces and not only to subsystems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا