ترغب بنشر مسار تعليمي؟ اضغط هنا

Witnessing causal nonseparability

41   0   0.0 ( 0 )
 نشر من قبل Mateus Ara\\'ujo
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Our common understanding of the physical world deeply relies on the notion that events are ordered with respect to some time parameter, with past events serving as causes for future ones. Nonetheless, it was recently found that it is possible to formulate quantum mechanics without any reference to a global time or causal structure. The resulting framework includes new kinds of quantum resources that allow performing tasks - in particular, the violation of causal inequalities - which are impossible for events ordered according to a global causal order. However, no physical implementation of such resources is known. Here we show that a recently demonstrated resource for quantum computation - the quantum switch - is a genuine example of indefinite causal order. We do this by introducing a new tool - the causal witness - which can detect the causal nonseparability of any quantum resource that is incompatible with a definite causal order. We show however that the quantum switch does not violate any causal nequality.

قيم البحث

اقرأ أيضاً

81 - Cyril Branciard 2016
It was recently realised that quantum theory allows for so-called causally nonseparable processes, which are incompatible with any definite causal order. This was first suggested on a rather abstract level by the formalism of process matrices, which only assumes that quantum theory holds locally in some observers laboratories, but does not impose a global causal structure; it was then shown, on a more practical level, that the quantum switch---a new resource for quantum computation that goes beyond causally ordered circuits---provided precisely a physical example of a causally nonseparable process. To demonstrate that a given process is causally nonseparable, we introduced in [Araujo et al., New J. Phys. 17, 102001 (2015)] the concept of witnesses of causal nonseparability. Here we present a shorter introduction to this concept, and concentrate on some explicit examples to show how to construct and use such witnesses in practice.
While the standard formulation of quantum theory assumes a fixed background causal structure, one can relax this assumption within the so-called process matrix framework. Remarkably, some processes, termed causally nonseparable, are incompatible with a definite causal order. We explore a form of certification of causal nonseparability in a semi-device-independent scenario where the involved parties receive trusted quantum inputs, but whose operations are otherwise uncharacterised. Defining the notion of causally nonseparable distributed measurements, we show that certain causally nonseparable processes which cannot violate any causal inequality, such as the canonical example of the quantum switch, can generate noncausal correlations in such a scenario. Moreover, by further imposing some natural structure to the untrusted operations, we show that all bipartite causally nonseparable process matrices can be certified with trusted quantum inputs.
184 - Jie Zhu , Yue Dai , S. Camalet 2021
The monogamy relations of entanglement are highly significant. However, they involve only amounts of entanglement shared by different subsystems. Results on monogamy relations between entanglement and other kinds of correlations, and particularly cla ssical correlations, are very scarce. Here we experimentally observe a tradeoff relation between internal quantum nonseparability and external total correlations in a photonic system and found that even purely classical external correlations have a detrimental effect on internal nonseparability. The nonseparability we consider, measured by the concurrence, is between different degrees of freedom within the same photon, and the external classical correlations, measured by the standard quantum mutual information, are generated between the photons of a photon pair using the time-bin method. Our observations show that to preserve the internal entanglement in a system, it is necessary to maintain low external correlations, including classical ones, between the system and its environment.
The quantification of quantum correlations (other than entanglement) usually entails laboured numerical optimization procedures also demanding quantum state tomographic methods. Thus it is interesting to have a laboratory friendly witness for the nat ure of correlations. In this Letter we report a direct experimental implementation of such a witness in a room temperature nuclear magnetic resonance system. In our experiment the nature of correlations is revealed by performing only few local magnetization measurements. We also compare the witness results with those for the symmetric quantum discord and we obtained a fairly good agreement.
102 - J. M. Zhang , Y. Liu 2017
The often elusive Poincare recurrence can be witnessed in a completely separable system. For such systems, the problem of recurrence reduces to the classic mathematical problem of simultaneous Diophantine approximation of multiple numbers. The latter problem then can be somewhat satisfactorily solved by using the famous Lenstra-Lenstra-Lov{a}sz (LLL) algorithm, which is implemented in the Mathematica built-in function verbLatticeReduce. The procedure is illustrated with a harmonic chain. The incredibly large recurrence times are obtained exactly. They follow the expected scaling law very well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا