ترغب بنشر مسار تعليمي؟ اضغط هنا

We present an analytic model to estimate the capabilities of space missions dedicated to the search for biosignatures in the atmosphere of rocky planets located in the habitable zone of nearby stars. Relations between performance and mission paramete rs such as mirror diameter, distance to targets, and radius of planets, are obtained. Two types of instruments are considered: coronagraphs observing in the visible, and nulling interferometers in the thermal infrared. Missions considered are: single-pupil coronagraphs with a 2.4 m primary mirror, and formation flying interferometers with 4 x 0.75 m collecting mirrors. The numbers of accessible planets are calculated as a function of {eta}earth. When Kepler gives its final estimation for {eta}earth, the model will permit a precise assessment of the potential of each instrument. Based on current estimations, {eta}earth = 10% around FGK stars and 50% around M stars, the coronagraph could study in spectroscopy only ~1.5 relevant planets, and the interferometer ~14.0. These numbers are obtained under the major hypothesis that the exozodiacal light around the target stars is low enough for each instrument. In both cases, a prior detection of planets is assumed and a target list established. For the long-term future, building both types of spectroscopic instruments, and using them on the same targets, will be the optimal solution because they provide complementary information. But as a first affordable space mission, the interferometer looks the more promising in term of biosignature harvest.
The NEAT (Nearby Earth Astrometric Telescope) mission is a proposal submitted to ESA for its 2010 call for M-size mission within the Cosmic Vision 2015-2025 plan. The main scientific goal of the NEAT mission is to detect and characterize planetary sy stems in an exhaustive way down to 1 Earth mass in the habitable zone and further away, around nearby stars for F, G, and K spectral types. This survey would provide the actual planetary masses, the full characterization of the orbits including their inclination, for all the components of the planetary system down to that mass limit. NEAT will continue the work performed by Hipparcos and Gaia by reaching a precision that is improved by two orders of magnitude on pointed targets.
(abridged) A complete census of planetary systems around a volume-limited sample of solar-type stars (FGK dwarfs) in the Solar neighborhood with uniform sensitivity down to Earth-mass planets within their Habitable Zones out to several AUs would be a major milestone in extrasolar planets astrophysics. This fundamental goal can be achieved with a mission concept such as NEAT - the Nearby Earth Astrometric Telescope. NEAT is designed to carry out space-borne extremely-high-precision astrometric measurements sufficient to detect dynamical effects due to orbiting planets of mass even lower than Earths around the nearest stars. Such a survey mission would provide the actual planetary masses and the full orbital geometry for all the components of the detected planetary systems down to the Earth-mass limit. The NEAT performance limits can be achieved by carrying out differential astrometry between the targets and a set of suitable reference stars in the field. The NEAT instrument design consists of an off-axis parabola single-mirror telescope, a detector with a large field of view made of small movable CCDs located around a fixed central CCD, and an interferometric calibration system originating from metrology fibers located at the primary mirror. The proposed mission architecture relies on the use of two satellites operating at L2 for 5 years, flying in formation and offering a capability of more than 20,000 reconfigurations (alternative option uses deployable boom). The NEAT primary science program will encompass an astrometric survey of our 200 closest F-, G- and K-type stellar neighbors, with an average of 50 visits. The remaining time might be allocated to improve the characterization of the architecture of selected planetary systems around nearby targets of specific interest (low-mass stars, young stars, etc.) discovered by Gaia, ground-based high-precision radial-velocity surveys.
Z CMa is a young binary system consisting of an Herbig primary and a FU Ori companion. Both components seem to be surrounded by active accretion disks and a jet was associated to the Herbig B0. In Nov. 2008, K. Grankin discovered that Z CMa was exhib iting an outburst with an amplitude larger than any photometric variations recorded in the last 25 years. To study the innermost regions in which the outburst occurs and understand its origin, we have observed both binary components with AMBER/VLTI across the Br{gamma} emission line in Dec. 2009 in medium and high spectral resolution modes. Our observations show that the Herbig Be, responsible for the increase of luminosity, also produces a strong Br{gamma} emission, and they allow us to disentangle from various origins by locating the emission at each velocities through the line. Considering a model of a Keplerian disk alone fails at reproducing the asymmetric spectro-astrometric measurements, suggesting a major contribution from an outflow.
Optical long baseline interferometry is a technique that has generated almost 850 refereed papers to date. The targets span a large variety of objects from planetary systems to extragalactic studies and all branches of stellar physics. We have create d a database hosted by the JMMC and connected to the Optical Long Baseline Interferometry Newsletter (OLBIN) web site using MySQL and a collection of XML or PHP scripts in order to store and classify these publications. Each entry is defined by its ADS bibcode, includes basic ADS informations and metadata. The metadata are specified by tags sorted in categories: interferometric facilities, instrumentation, wavelength of operation, spectral resolution, type of measurement, target type, and paper category, for example. The whole OLBIN publication list has been processed and we present how the database is organized and can be accessed. We use this tool to generate statistical plots of interest for the community in optical long baseline interferometry.
We present here a new observational technique, Phase Closure Nulling (PCN), which has the potential to obtain very high contrast detection and spectroscopy of faint companions to bright stars. PCN consists in measuring closure phases of fully resolve d objects with a baseline triplet where one of the baselines crosses a null of the object visibility function. For scenes dominated by the presence of a stellar disk, the correlated flux of the star around nulls is essentially canceled out, and in these regions the signature of fainter, unresolved, scene object(s) dominates the imaginary part of the visibility in particular the closure phase. We present here the basics of the PCN method, the initial proof-of-concept observation, the envisioned science cases and report about the first observing campaign made on VLTI/AMBER and CHARA/MIRC using this technique.
We present the third release of the AMBER data reduction software by the JMMC. This software is based on core algorithms optimized after several years of operation. An optional graphic interface in a high level language allows the user to control the process step by step or in a completely automatic manner. Ongoing improvement is the implementation of a robust calibration scheme, making use of the full calibration sets available during the night. The output products are standard OI-FITS files, which can be used directly in high level software like model fitting or image reconstruction tools. The software performances are illustrated on a full data set of calibrators observed with AMBER during 5 years taken in various instrumental setup.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا