ترغب بنشر مسار تعليمي؟ اضغط هنا

High precision astrometry mission for the detection and characterization of nearby habitable planetary systems with the Nearby Earth Astrometric Telescope (NEAT)

121   0   0.0 ( 0 )
 نشر من قبل Fabien Malbet
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(abridged) A complete census of planetary systems around a volume-limited sample of solar-type stars (FGK dwarfs) in the Solar neighborhood with uniform sensitivity down to Earth-mass planets within their Habitable Zones out to several AUs would be a major milestone in extrasolar planets astrophysics. This fundamental goal can be achieved with a mission concept such as NEAT - the Nearby Earth Astrometric Telescope. NEAT is designed to carry out space-borne extremely-high-precision astrometric measurements sufficient to detect dynamical effects due to orbiting planets of mass even lower than Earths around the nearest stars. Such a survey mission would provide the actual planetary masses and the full orbital geometry for all the components of the detected planetary systems down to the Earth-mass limit. The NEAT performance limits can be achieved by carrying out differential astrometry between the targets and a set of suitable reference stars in the field. The NEAT instrument design consists of an off-axis parabola single-mirror telescope, a detector with a large field of view made of small movable CCDs located around a fixed central CCD, and an interferometric calibration system originating from metrology fibers located at the primary mirror. The proposed mission architecture relies on the use of two satellites operating at L2 for 5 years, flying in formation and offering a capability of more than 20,000 reconfigurations (alternative option uses deployable boom). The NEAT primary science program will encompass an astrometric survey of our 200 closest F-, G- and K-type stellar neighbors, with an average of 50 visits. The remaining time might be allocated to improve the characterization of the architecture of selected planetary systems around nearby targets of specific interest (low-mass stars, young stars, etc.) discovered by Gaia, ground-based high-precision radial-velocity surveys.



قيم البحث

اقرأ أيضاً

The NEAT (Nearby Earth Astrometric Telescope) mission is a proposal submitted to ESA for its 2010 call for M-size mission within the Cosmic Vision 2015-2025 plan. The main scientific goal of the NEAT mission is to detect and characterize planetary sy stems in an exhaustive way down to 1 Earth mass in the habitable zone and further away, around nearby stars for F, G, and K spectral types. This survey would provide the actual planetary masses, the full characterization of the orbits including their inclination, for all the components of the planetary system down to that mass limit. NEAT will continue the work performed by Hipparcos and Gaia by reaching a precision that is improved by two orders of magnitude on pointed targets.
The NEAT (Nearby Earth Astrometric Telescope) mission is a proposition submitted to ESA for its 2010 call for M-size mission. The main scientific goal is to detect and characterize planetary systems in an exhaustive way down to 1 Earth mass in the ha bitable zone and further away, around nearby stars for F, G, and K spectral types. This survey would provide the actual planetary masses, the full characterization of the orbits including their inclination, for all the components of the planetary system down to that mass limit. Extremely- high-precision astrometry, in space, can detect the dynamical effect due to even low mass orbiting planets on their central star, reaching those scientific goals. NEAT will continue the work performed by Hipparcos (1mas precision) and Gaia (7{mu}as aimed) by reaching a precision that is improved by two orders of magnitude (0.05{mu}as, 1{sigma} accuracy). The two modules of the payload, the telescope and the focal plane, must be placed 40m away leading to a formation flying option studied as the reference mission. NEAT will operate at L2 for 5 years, the telescope satellite moving around the focal plane one to point different targets and allowing whole sky coverage in less than 20 days. The payload is made of 3 subsystems: primary mirror and its dynamic support, the focal plane with the detectors, and the metrology. The principle is to measure the angles between the target star, usually bright (R leq 6), and fainter reference stars (R leq 11) using a metrology system that projects dynamical Youngs fringes onto the focal plane. The proposed architecture relies on two satellites of about 700 kg, offering a capability of more than 20,000 reconfigurations. The two satellites are launched in a stacked configuration using a Soyuz ST launch, and are deployed after launch to individually perform cruise to their operational Lissajous orbit.
Under certain conditions, stellar radial velocities can be determined from astrometry, without any use of spectroscopy. This enables us to identify phenomena, other than the Doppler effect, that are displacing spectral lines. The change of stellar pr oper motions over time (perspective acceleration) is used to determine radial velocities from accurate astrometric data, which are now available from the Gaia and Hipparcos missions. Positions and proper motions at the epoch of Hipparcos are compared with values propagated back from the epoch of the Gaia Early Data Release 3. This propagation depends on the radial velocity, which obtains its value from an optimal fit assuming uniform space motion relative to the solar system barycentre. For 930 nearby stars we obtain astrometric radial velocities with formal uncertainties better than 100 km/s; for 55 stars the uncertainty is below 10 km/s, and for seven it is below 1 km/s. Most stars that are not components of double or multiple systems show good agreement with available spectroscopic radial velocities. Astrometry offers geometric methods to determine stellar radial velocity, irrespective of complexities in stellar spectra. This enables us to segregate wavelength displacements caused by the radial motion of the stellar centre-of-mass from those induced by other effects, such as gravitational redshifts in white dwarfs.
We re-analyze 4 years of HARPS spectra of the nearby M1.5 dwarf GJ 667C available through the ESO public archive. The new radial velocity (RV) measurements were obtained using a new data analysis technique that derives the Doppler measurement and oth er instrumental effects using a least-squares approach. Combining these new 143 measurements with 41 additional RVs from the Magellan/PFS and Keck/HIRES spectrometers, reveals 3 additional signals beyond the previously reported 7.2-day candidate, with periods of 28 days, 75 days, and a secular trend consistent with the presence of a gas giant (Period sim 10 years). The 28-day signal implies a planet candidate with a minimum mass of 4.5 Mearth orbiting well within the canonical definition of the stars liquid water habitable zone, this is, the region around the star at which an Earth-like planet could sustain liquid water on its surface. Still, the ultimate water supporting capability of this candidate depends on properties that are unknown such as its albedo, atmospheric composition and interior dynamics. The 75-day signal is less certain, being significantly affected by aliasing interactions among a potential 91-day signal, and the likely rotation period of the star at 105 days detected in two activity indices. GJ 667C is the common proper motion companion to the GJ 667AB binary, which is metal poor compared to the Sun. The presence of a super-Earth in the habitable zone of a metal poor M dwarf in a triple star system, supports the evidence that such worlds should be ubiquitous in the Galaxy.
165 - Ji Jianghui 2009
We perform numerical simulations to study the Habitable zones (HZs) and dynamical structure for Earth-mass planets in multiple planetary systems. For example, in the HD 69830 system, we extensively explore the planetary configuration of three Neptune -mass companions with one massive terrestrial planet residing in 0.07 AU $leq a leq$ 1.20 AU, to examine the asteroid structure in this system. We underline that there are stable zones of at least $10^5$ yr for low-mass terrestrial planets locating between 0.3 and 0.5 AU, and 0.8 and 1.2 AU with final eccentricities of $e < 0.20$. Moreover, we also find that the accumulation or depletion of the asteroid belt are also shaped by orbital resonances of the outer planets, for example, the asteroidal gaps at 2:1 and 3:2 mean motion resonances (MMRs) with Planet C, and 5:2 and 1:2 MMRs with Planet D. In a dynamical sense, the proper candidate regions for the existence of the potential terrestrial planets or HZs are 0.35 AU $< a < $ 0.50 AU, and 0.80 AU $< a < $ 1.00 AU for relatively low eccentricities, which makes sense to have the possible asteroidal structure in this system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا