ترغب بنشر مسار تعليمي؟ اضغط هنا

We discuss the heat transfer by photons between two metals coupled by a linear element with a reactive impedance. Using a simple circuit approach, we calculate the spectral power transmitted from one resistor to the other and find that it is determin ed by the photon transmission coefficient, which depends on the impedances of the metals and the coupling element. We study the total photonic power flow for different coupling impedances, both in the linear regime, where the temperature difference between the metals is small, and in the non-linear regime of large temperature differences.
We investigate the physics of coherent quantum phase slips in two distinct circuits containing small Josephson junctions: (i) a single junction embedded in an inductive environment and (ii) a long chain of junctions. Starting from the standard Joseph son Hamiltonian, the single junction circuit can be analyzed using quasi-classical methods; we formulate the conditions under which the resulting quasi-charge dynamics is exactly dual to the usual phase dynamics associated with Josephson tunneling. For the chain we use the fact that its collective behavior can be characterized by one variable: the number $m$ of quantum phase slips present on it. We conclude that the dynamics of the conjugate quasi-charge is again exactly dual to the standard phase dynamics of a single Josephson junction. In both cases we elucidate the role of the inductance, essential to obtain exact duality. These conclusions have profound consequences for the behavior of single junctions and chains under microwave irradiation. Since both systems are governed by a model exactly dual to the standard resistively and capacitively shunted junction model, we expect the appearance of current-Shapiro steps. We numerically calculate the corresponding current-voltage characteristics in a wide range of parameters. Our results are of interest in view of a metrological current standard.
76 - H. Jirari , F.W.J. Hekking , 2009
We consider a current-biased dc SQUID in the presence of an applied time-dependent bias current or magnetic flux. The phase dynamics of such a Josephson device is equivalent to that of a quantum particle trapped in a $1-$D anharmonic potential, subje ct to external time-dependent control fields, {it i.e.} a driven multilevel quantum system. The problem of finding the required time-dependent control field that will steer the system from a given initial state to a desired final state at a specified final time is formulated in the framework of optimal control theory. Using the spectral filter technique, we show that the selected optimal field which induces a coherent population transfer between quantum states is represented by a carrier signal having a constant frequency but which is time-varied both in amplitude and phase. The sensitivity of the optimal solution to parameter perturbations is also addressed.
Using a Luttinger-liquid approach we study the quantum fluctuations of a Bose-Josephson junction, consisting of a Bose gas confined to a quasi one-dimensional ring trap which contains a localized repulsive potential barrier. For an infinite barrier w e study the one-particle and two-particle static correlation functions. For the one-body density-matrix we obtain different power-law decays depending on the location of the probe points with respect to the position of the barrier. This quasi-long range order can be experimentally probed in principle using an interference measurement. The corresponding momentum distribution at small momenta is also shown to be affected by the presence of the barrier and to display the universal power-law behavior expected for an interacting 1D fluid. We also evaluate the particle density profile, and by comparing with the exact results in the Tonks-Girardeau limit we fix the nonuniversal parameters of the Luttinger-liquid theory. Once the parameters are determined from one-body properties, we evaluate the density-density correlation function, finding a remarkable agreement between the Luttinger liquid predictions and the exact result in the Tonks-Girardeau limit, even at the length scale of the Friedel-like oscillations which characterize the behavior of the density-density correlation function at intermediate distance. Finally, for a large but finite barrier we use the one-body correlation function to estimate the effect of quantum fluctuations on the renormalization of the barrier height, finding a reduction of the effective Josephson coupling energy, which depends on the length of the ring and on the interaction strength.
We propose quantum stirring with a laser beam as a probe of superfluid behavior for a strongly interacting one-dimensional Bose gas confined to a ring. Within the Luttinger liquid theory framework, we calculate the fraction of stirred particles per p eriod as a function of the stirring velocity, the interaction strength and the coupling between the stirring beam and the bosons. The fraction of stirred particles allows to probe superfluidity of the system. We find that it crosses over at a critical velocity, lower than the sound one, from a characteristic power law at high velocities to a constant at low velocities. Some experimental issues on quantum stirring in ring-trapped condensates are discussed.
We present a quantum calculation based on scattering theory of the frequency dependent noise of current in an interacting chaotic cavity. We include interactions of the electron system via long range Coulomb forces between the conductor and a gate wi th capacitance $C$. We obtain explicit results exhibiting the two time scales of the problem, the cavitys dwell time $tau_D$ and the $RC$-time $tau_C$ of the cavity {em vis `a vis} the gate. The noise shows peculiarities at frequencies of the order and exceeding the inverse charge relaxation time $tau^{-1} = tau^{-1}_D+tau^{-1}_C $.
We study the electron thermal transport in granular metals at large tunnel conductance between the grains, $g_T gg 1$ and not too low a temperature $T > g_Tdelta$, where $delta$ is the mean energy level spacing for a single grain. Taking into account the electron-electron interaction effects we calculate the thermal conductivity and show that the Wiedemann-Franz law is violated for granular metals. We find that interaction effects suppress the thermal conductivity less than the electrical conductivity.
Inspired by a recent experiment, we study the influence of thermal fluctuations on the $I$-$V$ characteristics of a Josephson junction, coupled to a strongly resistive environment. We obtain analytical results in the limit where the Josephson energy is larger than the charging energy and quasiparticles are absent.
We study adiabatic charge transfer in a superconducting Cooper pair pump, focusing on the influence of current measurement on coherence. We investigate the limit where the Josephson coupling energy $E_J$ between the various parts of the system is sma ll compared to the Coulomb charging energy $E_C$. In this case the charge transferred in a pumping cycle $Q_P sim 2e$, the charge of one Cooper pair: the main contribution is due to incoherent Cooper pair tunneling. We are particularly interested in the quantum correction to $Q_P$, which is due to coherent tunneling of pairs across the pump and which depends on the superconducting phase difference $phi_0$ between the electrodes: $1-Q_P/(2e) sim (E_J/E_C) cos phi_0$. A measurement of $Q_P$ tends to destroy the phase coherence. We first study an arbitrary measuring circuit and then specific examples and show that coherent Cooper pair transfer can in principle be detected using an inductively shunted ammeter.
We study a quantum dot connected to the bulk by single-mode junctions at almost perfect conductance. Although the average charge $elangle N rangle$ of the dot is not discrete, its spin remains quantized: $s=1/2$ or $s=0$, depending (periodically) on the gate voltage. This drastic difference from the conventional mixed-valence regime stems from the existence of a broad-band, dense spectrum of discrete levels in the dot. In the doublet state, the Kondo effect develops at low temperatures. We find the Kondo temperature $T_K$ and the conductance at $Tlesssim T_K$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا