ﻻ يوجد ملخص باللغة العربية
We present a quantum calculation based on scattering theory of the frequency dependent noise of current in an interacting chaotic cavity. We include interactions of the electron system via long range Coulomb forces between the conductor and a gate with capacitance $C$. We obtain explicit results exhibiting the two time scales of the problem, the cavitys dwell time $tau_D$ and the $RC$-time $tau_C$ of the cavity {em vis `a vis} the gate. The noise shows peculiarities at frequencies of the order and exceeding the inverse charge relaxation time $tau^{-1} = tau^{-1}_D+tau^{-1}_C $.
We consider a one-channel coherent conductor with a good transmission embedded into an ohmic environment whose impedance is equal to the quantum of resistance R_q=h/e^2 below the RC frequency. This choice is motivated by the mapping of this problem t
We propose an extension of the Landauer-Buttiker scattering theory to include effects of interaction in the active region of a mesoscopic conductor structure. The current expression obtained coincides with those derived by different methods. A new ge
We have calculated the finite-frequency current noise of a superconductor-ferromagnet quantum point contact (SF QPC). This signal is qualitatively affected by the spin-dependence of interfacial phase shifts (SDIPS) acquired by electrons upon reflecti
We present a detailed study for the finite-frequency current noise of a Kondo quantum dot in presence of a magnetic field by using a recently developed real time functional renormalization group approach [Phys. Rev. B $mathbf{83}$, 201303(R) (2011)].
The control and measurement of local non-equilibrium configurations is of utmost importance in applications on energy harvesting, thermoelectrics and heat management in nano-electronics. This challenging task can be achieved with the help of various