ترغب بنشر مسار تعليمي؟ اضغط هنا

We present Herschel/HIFI observations of fourteen water lines in W43-MM1, a massive protostellar object in the luminous star cluster-forming region W43. We analyze the gas dynamics from the line profiles using Herschel-HIFI observations (WISH-KP) of fourteen far-IR water lines (H2O, H217O, H218O), CS(11-10), and C18O(9-8) lines, and using our modeling of the continuum spectral energy distribution. As for lower mass protostellar objects, the molecular line profiles are a mix of emission and absorption, and can be decomposed into medium, and broad velocity components. The broad component is the outflow associated with protostars of all masses. Our modeling shows that the remainder of the water profiles can be well fitted by an infalling and passively heated envelope, with highly supersonic turbulence varying from 2.2 km/s in the inner region to 3.5 km/s in the outer envelope. Also, W43-MM1 has a high accretion rate, between 4.0 x 10^{-4} and 4.0 x 10^{-2} msun /yr, derived from the fast (0.4-2.9 km/s) infall observed. We estimate a lower mass limit of gaseous water of 0.11 msun and total water luminosity of 1.5 lsun (in the 14 lines presented here). The central hot core is detected with a water abundance of 1.4 x 10^{-4} while the water abundance for the outer envelope is 8 x10^{-8}. The latter value is higher than in other sources, most likely related to the high turbulence and the micro-shocks created by its dissipation. Examining water lines of various energies, we find that the turbulent velocity increases with the distance to the center. While not in clear disagreement with the competitive accretion scenario, this behavior is predicted by the turbulent core model. Moreover, the estimated accretion rate is high enough to overcome the expected radiation pressure.
We use the H3O+ molecule to investigate the impact of starburst and AGN activity on the chemistry of the molecular interstellar medium. Using the JCMT, we have observed the 3+_2 - 2-_2 364 GHz line of p-H3O+ towards the centers of seven active galaxi es. We have detected p-H3O+ towards IC342, NGC253, NGC1068, NGC4418, and NGC6240. Upper limits were obtained for IRAS15250 and Arp299. We find large H3O+ abundances (N(H3O+)/N(H2)>10^{-8}) in all detected galaxies apart from in IC342 where it is about one order of magnitude lower. We note, however, that uncertainties in N(H3O+) may be significant due to lack of definite information on source size and excitation. We furthermore compare the derived N(H3O+) with N(HCO+) and find that the H3O+ to HCO+ column density ratio is large in NGC1068 (24), moderate in NGC4418 and NGC253 (4-5), slightly less than unity in NGC6240 (0.7) and lowest in IC342 (0.2-0.6). We compare our results with models of X-ray and photon dominated regions (XDRs and PDRs). For IC342 we find that a starburst PDR chemistry can explain the observed H3O+ abundance. For the other galaxies, the large H3O+ columns are generally consistent with XDR models. In particular for NGC1068 the elevated N(H3O+)/N(HCO+) ratio suggests a low column density XDR. For NGC4418 however, large HC3N abundances are inconsistent with the XDR interpretation. An alternative possibility is that H3O+ forms through H2O evaporating off dust grains and reacting with HCO+ in warm, dense gas. This scenario could also potentially fit the results for NGC253. Further studies of the excitation and distribution of H3O+ - as well as Herschel observations of water abundances - will help to further constrain the models.
Early results from the Herschel Space Observatory revealed the water cation H2O+ to be an abundant ingredient of the interstellar medium. Here we present new observations of the H2O and H2O+ lines at 1113.3 and 1115.2 GHz using the Herschel Space Obs ervatory toward a sample of high-mass star-forming regions to observationally study the relation between H2O and H2O+ . Nine out of ten sources show absorption from H2O+ in a range of environments: the molecular clumps surrounding the forming and newly formed massive stars, bright high-velocity outflows associated with the massive protostars, and unrelated low-density clouds along the line of sight. Column densities per velocity component of H2 O+ are found in the range of 10^12 to a few 10^13 cm-2 . The highest N(H2O+) column densities are found in the outflows of the sources. The ratios of H2O+/H2O are determined in a range from 0.01 to a few and are found to differ strongly between the observed environments with much lower ratios in the massive (proto)cluster envelopes (0.01-0.1) than in outflows and diffuse clouds. Remarkably, even for source components detected in H2O in emission, H2O+ is still seen in absorption.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا