ترغب بنشر مسار تعليمي؟ اضغط هنا

Upcoming large imaging surveys will allow detailed studies of the structure and morphology of galaxies aimed at addressing how galaxies form and evolve. Computational approaches are needed to characterize their morphologies over large samples. We int roduce an automatic method to quantify the outer structure of galaxies. The key to our approach is the division of a galaxy image into two sections delineated by the isophote which encloses half the total brightness of the galaxy. We call the central section the inner half-flux region (IHR) and the outer section the outer half-flux region (OHR). From this division, we derive two parameters: $A_{rm o}$, which measures the asymmetry of the OHR, and $D_{rm o}$, which measures the deviation of the intensity weighted centroid of the OHR from that of the IHR relative to the effective radius. We derive the two parameters from $HST$/ACS $z_{850}$-band images for a sample of 764 galaxies with $z_{850}<22$ mag and $0.35<z<0.9$ selected from GEMS and GOODS-South surveys. We show that the sample galaxies having strong asymmetric structures, in particular tidal tails, are well-separated from those with regular morphologies in the $A_{rm o}$-$D_{rm o}$ space. Meanwhile, the widely used $CAS$ and Gini-$M_{20}$ methods turn out to be insensitive to such morphological features. We stress that the $A_{rm o}$-$D_{rm o}$ method is an efficient way to select galaxies with significant asymmetric features like tidal tails and study galaxy mergers in the dynamical phase traced by these delicate features.
50 - F. X. An 2014
A study of [S III]$lambdalambda9096,9532$ emitters at $z$ = 1.34 and 1.23 is presented using our deep narrow-band $H_2S1$ (centered at 2.13 $mu$m) imaging survey of the Extended Chandra Deep Field South (ECDFS). We combine our data with multi-wavelen gth data of ECDFS to build up spectral energy distributions (SEDs) from the $U$ to the $K_{s}$-band for emitter candidates selected with strong excess in $H_2S1 - K_{s}$ and derive photometric redshifts, line luminosities, stellar masses and extinction. A sample of 14 [S III] emitters are identified with $H_2S1<22.8$ and $K_{rm s}<24.8$ (AB) over 381 arcmin$^{2}$ area, having [S III] line luminosity $L_{[SIII]}= sim 10^{41.5-42.6}$erg s$^{-1}$. None of the [S III] emitters is found to have X-ray counterpart in the deepest Chandra 4 Ms observation, suggesting that they are unlikely powered by AGN. HST/ACS F606W and HST/WFC3 F160W images show their rest-frame UV and optical morphologies. About half of the [S III] emitters are mergers and at least one third are disk-type galaxies. Nearly all [S III] emitters exhibit a prominent Balmer break in their SEDs, indicating the presence of a significant post-starburst component. Taken together, our results imply that both shock heating in post-starburst and photoionization caused by young massive stars are likely to excite strong [S III] emission lines. We conclude that the emitters in our sample are dominated by star-forming galaxies with stellar mass $8.7<log (M/M_{sun})<9.9$.
171 - F. X. An , X. Z. Zheng 2014
Using deep narrow-band $H_2S1$ and $K_{s}$-band imaging data obtained with CFHT/WIRCam, we identify a sample of 56 H$alpha$ emission-line galaxies (ELGs) at $z=2.24$ with the 5$sigma$ depths of $H_2S1=22.8$ and $K_{s}=24.8$ (AB) over 383 arcmin$^{2}$ area in the ECDFS. A detailed analysis is carried out with existing multi-wavelength data in this field. Three of the 56 H$alpha$ ELGs are detected in Chandra 4 Ms X-ray observation and two of them are classified as AGNs. The rest-frame UV and optical morphologies revealed by HST/ACS and WFC3 deep images show that nearly half of the H$alpha$ ELGs are either merging systems or with a close companion, indicating that the merging/interacting processes play a key role in regulating star formation at cosmic epoch z=2-3; About 14% are too faint to be resolved in the rest-frame UV morphology due to high dust extinction. We estimate dust extinction from SEDs. We find that dust extinction is generally correlated with H$alpha$ luminosity and stellar mass (SM). Our results suggest that H$alpha$ ELGs are representative of star-forming galaxies (SFGs). Applying extinction correction for individual objects, we examine the intrinsic H$alpha$ luminosity function (LF) at $z=2.24$, obtaining a best-fit Schechter function characterized by a faint-end slope of $alpha=-1.3$. This is shallower than the typical slope of $alpha sim -1.6$ in previous works based on constant extinction correction. We demonstrate that this difference is mainly due to the different extinction corrections. The proper extinction correction is thus key to recovering the intrinsic LF as the extinction globally increases with H$alpha$ luminosity. Moreover, we find that our H$alpha$ LF mirrors the SM function of SFGs at the same cosmic epoch. This finding indeed reflects the tight correlation between SFR and SM for the SFGs, i.e., the so-called main sequence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا