ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the importance of interband effects on the orbital susceptibility of three bands $alpha$-${cal T}_3$ tight-binding models. The particularity of these models is that the coupling between the three energy bands (which is encoded in the wavefun ctions properties) can be tuned (by a parameter $alpha$) without any modification of the energy spectrum. Using the gauge-invariant perturbative formalism that we have recently developped, we obtain a generic formula of the orbital susceptibility of $alpha$-${cal T}_3$ tight-binding models. Considering then three characteristic examples that exhibit either Dirac, semi-Dirac or quadratic band touching, we show that by varying the parameter $alpha$ and thus the wavefunctions interband couplings, it is possible to drive a transition from a diamagnetic to a paramagnetic peak of the orbital susceptibility at the band touching. In the presence of a gap separating the dispersive bands, we show that the susceptibility inside the gap exhibits a similar dia to paramagnetic transition.
We develop a gauge-independent perturbation theory for the grand potential of itinerant electrons in two-dimensional tight-binding models in the presence of a perpendicular magnetic field. At first order in the field, we recover the result of the so- called {it modern theory of orbital magnetization} and, at second order, deduce a new general formula for the orbital susceptibility. In the special case of two coupled bands, we relate the susceptibility to geometrical quantities such as the Berry curvature. Our results are applied to several two-band -- either gapless or gapped -- systems. We point out some surprising features in the orbital susceptibility -- such as in-gap diamagnetism or parabolic band edge paramagnetism -- coming from interband coupling. From that we draw general conclusions on the orbital magnetism of itinerant electrons in multi-band tight-binding models.
We analyze the low-energy properties of two-dimensional direct-gap semiconductors, such as for example the transition-metal dichalcogenides MoS$_2$, WS$_2$, and their diselenide analogues MoSe$_2$, WSe$_2$, etc., which are currently intensively inves tigated. In general, their electrons have a mixed character -- they can be massive Dirac fermions as well as simple Schrodinger particles. We propose a measure (Diracness) for the degree of mixing between the two characters and discuss how this quantity can in principle be extracted experimentally, within magneto-transport measurements, and numerically via ab initio calculations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا