ترغب بنشر مسار تعليمي؟ اضغط هنا

111 - F. Peano , M. Marti , L. O. Silva 2009
In particle-based algorithms, the effect of binary collisions is commonly described in a statistical way, using Monte Carlo techniques. It is shown that, in the relativistic regime, stringent constraints should be considered on the sampling of partic le pairs for collision, which are critical to ensure physically meaningful results, and that nonrelativistic sampling criteria (e.g., uniform random pairing) yield qualitatively wrong results, including equilibrium distributions that differ from the theoretical Juttner distribution. A general procedure for relativistically consistent algorithms is provided, and verified with three-dimensional Monte Carlo simulations, thus opening the way to the numerical exploration of the statistical properties of collisional relativistic systems.
The expansion of laser-irradiated clusters or nanodroplets depends strongly on the amount of energy delivered to the electrons and can be controlled by using appropriately shaped laser pulses. In this paper, a self-consistent kinetic model is used to analyze the transition from quasineutral, hydrodinamic-like expansion regimes to the Coulomb explosion (CE) regime when increasing the ratio between the thermal energy of the electrons and the electrostatic energy stored in the cluster. It is shown that a suitable double-pump irradiation scheme can produce hybrid expansion regimes, wherein a slow hydrodynamic expansion is followed by a fast CE, leading to ion overtaking and producing multiple ion flows expanding with different velocities. This can be exploited to obtain intracluster fusion reactions in both homonuclear deuterium clusters and heteronuclear deuterium-tritium clusters, as also proved by three-dimensional molecular-dynamics simulations.
437 - F. Peano , J. Vieira , R. Mulas 2008
A scheme for fast, compact, and controllable acceleration of heavy particles in vacuum has been recently proposed [F. Peano et al., New J. Phys. 10 033028 (2008)], wherein two counterpropagating laser beams with variable frequencies drive a beat-wave structure with variable phase velocity, leading to particle trapping and acceleration. The technique allows for fine control over the energy distribution and the total charge of the accelerated beam, to be obtained via tuning of the frequency variation. Here, the theoretical bases of the acceleration scheme are described, and the possibility of applications to ultrafast muon acceleration and to the prompt extraction of cold-muon beams is discussed.
A method is proposed for producing monoergetic, high-quality ion beams in vacuum, via direct acceleration by the electromagnetic field of two counterpropagating, variable-frequency lasers: ions are trapped and accelerated by a beat-wave structure wit h variable phase velocity, allowing for fine control over the energy and the charge of the beam via tuning of the frequency variation. The physical mechanism is described with a one-dimensional theory, providing the general conditions for trapping and scaling laws for the relevant features of the ion beam. Two-dimensional, electromagnetic particle-in-cell simulations, in which hydrogen gas is considered as an ion source, confirm the validity and the robustness of the method.
114 - F. Peano , J. Vieira , L. O. Silva 2008
A scheme for fast, compact, and controllable acceleration of heavy particles in vacuum is proposed, in which two counterpropagating lasers with variable frequencies drive a beat-wave structure with variable phase velocity, thus allowing for trapping and acceleration of heavy particles, such as ions or muons. Fine control over the energy distribution and the total charge of the beam is obtained via tuning of the frequency variation. The acceleration scheme is described with a one-dimensional theory, providing the general conditions for trapping and scaling laws for the relevant features of the particle beam. Two-dimensional, electromagnetic particle-in-cell simulations confirm the validity and the robustness of the physical mechanism.
93 - F. Peano , G. Coppa , F. Peinetti 2007
Recently, the collisionless expansion of spherical nanoplasmas has been analyzed with a new ergodic model, clarifying the transition from hydrodynamic-like to Coulomb-explosion regimes, and providing accurate laws for the relevant features of the phe nomenon. A complete derivation of the model is here presented. The important issue of the self-consistent initial conditions is addressed by analyzing the initial charging transient due to the electron expansion, in the approximation of immobile ions. A comparison among different kinetic models for the expansion is presented, showing that the ergodic model provides a simplified description, which retains the essential information on the electron distribution, in particular, the energy spectrum. Results are presented for a wide range of initial conditions (determined from a single dimensionless parameter), in excellent agreement with calculations from the exact Vlasov-Poisson theory, thus providing a complete and detailed characterization of all the stages of the expansion.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا