ﻻ يوجد ملخص باللغة العربية
A scheme for fast, compact, and controllable acceleration of heavy particles in vacuum has been recently proposed [F. Peano et al., New J. Phys. 10 033028 (2008)], wherein two counterpropagating laser beams with variable frequencies drive a beat-wave structure with variable phase velocity, leading to particle trapping and acceleration. The technique allows for fine control over the energy distribution and the total charge of the accelerated beam, to be obtained via tuning of the frequency variation. Here, the theoretical bases of the acceleration scheme are described, and the possibility of applications to ultrafast muon acceleration and to the prompt extraction of cold-muon beams is discussed.
A scheme for fast, compact, and controllable acceleration of heavy particles in vacuum is proposed, in which two counterpropagating lasers with variable frequencies drive a beat-wave structure with variable phase velocity, thus allowing for trapping
Laser-plasma accelerators produce electric fields of the order of 100 GV/m, more than 1000 times larger than radio-frequency accelerators. Thanks to this unique field strength, they appear as a promising path to generate electron beams beyond the TeV
One of the major goals of research for laser-plasma accelerators is the realization of compact sources of femtosecond X-rays. In particular, using the modest electron energies obtained with existing laser systems, Compton scattering a photon beam off
A set of ballpark parameters for laser, plasma, and accelerator technologies that define for electron energies reaching as high as TeV are identified. These ballpark parameters are carved out from the fundamental scaling laws that govern laser accele
Injection of well-defined, high-quality electron populations into plasma waves is a key challenge of plasma wakefield accelerators. Here, we report on the first experimental demonstration of plasma density downramp injection in an electron-driven pla